T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome – Nature Reviews Drug Discovery

  • Hedrick, S. M., Cohen, D. I., Nielsen, E. A. & Davis, M. M. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 308, 149–153 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Yanagi, Y. et al. A human T cell-specific cDNA clone encodes a protein having extensive homology to immunoglobulin chains. Nature 308, 145–149 (1984). Together with Hedrick et al. (1984), this work reports the genetic sequence for the TCRβ chain in mice and humans for the first time.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, S. A. IL-2: the first effective immunotherapy for human cancer. J. Immunol. 192, 5451–5458 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guedan, S., Ruella, M. & June, C. H. Emerging cellular therapies for cancer. Annu. Rev. Immunol. 37, 145–171 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Chandran, S. S. & Klebanoff, C. A. T cell receptor-based cancer immunotherapy: emerging efficacy and pathways of resistance. Immunol. Rev. 290, 127–147 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).

    Article  PubMed  Google Scholar 

  • Rossjohn, J. et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 33, 169–200 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Liddy, N. et al. Monoclonal TCR-redirected tumor cell killing. Nat. Med. 18, 980–987 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Hsiue, E. H. et al. Targeting a neoantigen derived from a common TP53 mutation. Science 371, eabc8697 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker, A. J. et al. Tumor antigen and receptor densities regulate efficacy of a chimeric antigen receptor targeting anaplastic lymphoma kinase. Mol. Ther. 25, 2189–2201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansilla-Soto, J. et al. HLA-independent T cell receptors for targeting tumors with low antigen density. Nat. Med. 28, 345–352 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, J. et al. A single peptide–major histocompatibility complex ligand triggers digital cytokine secretion in CD4+ T cells. Immunity 39, 846–857 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Purbhoo, M. A., Irvine, D. J., Huppa, J. B. & Davis, M. M. T cell killing does not require the formation of a stable mature immunological synapse. Nat. Immunol. 5, 524–530 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Sibille, C. et al. Structure of the gene of tum- transplantation antigen P198: a point mutation generates a new antigenic peptide. J. Exp. Med. 172, 35–45 (1990).

    Article  CAS  PubMed  Google Scholar 

  • den Haan, J. M. et al. The minor histocompatibility antigen HA-1: a diallelic gene with a single amino acid polymorphism. Science 279, 1054–1057 (1998).

    Article  Google Scholar 

  • Lamb, J. R., Feldmann, M., Green, N. & Lerner, R. A. Influence of antigen structure on the activation and induction of unresponsiveness in cloned human T lymphocytes. Immunol 57, 331–335 (1986).

    CAS  Google Scholar 

  • Nathan, P. et al. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N. Engl. J. Med. 385, 1196–1206 (2021). This paper reports on a randomized clinical trial in patients with metastatic uveal melanoma which led to the first FDA-approved TCR therapeutic for the treatment of cancer.

    Article  CAS  PubMed  Google Scholar 

  • Carter, P. J. & Lazar, G. A. Next generation antibody drugs: pursuit of the ‘high-hanging fruit’. Nat. Rev. Drug. Discov. 17, 197–223 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Kalbasi, A. & Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 20, 25–39 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Peri, A. et al. The landscape of T cell antigens for cancer immunotherapy. Nat. Cancer 4, 937–954 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Susac, L. et al. Structure of a fully assembled tumor-specific T cell receptor ligated by pMHC. Cell 185, 3201–3213.e19 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebestyen, Z., Prinz, I., Dechanet-Merville, J., Silva-Santos, B. & Kuball, J. Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies. Nat. Rev. Drug. Discov. 19, 169–184 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Davis, M. M. & Bjorkman, P. J. T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–402 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Thomas, S. et al. Framework engineering to produce dominant T cell receptors with enhanced antigen-specific function. Nat. Commun. 10, 4451 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabaniols, J. P., Fazilleau, N., Casrouge, A., Kourilsky, P. & Kanellopoulos, J. M. Most α/β T cell receptor diversity is due to terminal deoxynucleotidyl transferase. J. Exp. Med. 194, 1385–1390 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrman, T. et al. ATLAS: a database linking binding affinities with structures for wild-type and mutant TCR–pMHC complexes. Proteins 85, 908–916 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leem, J., de Oliveira, S. H. P., Krawczyk, K. & Deane, C. M. STCRDab: the structural T-cell receptor database. Nucleic Acids Res. 46, D406–D412 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Aleksic, M. et al. Different affinity windows for virus and cancer-specific T-cell receptors: implications for therapeutic strategies. Eur. J. Immunol. 42, 3174–3179 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foote, J. & Eisen, H. N. Kinetic and affinity limits on antibodies produced during immune responses. Proc. Natl Acad. Sci. USA 92, 1254–1256 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clay, T. M. et al. Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. J. Immunol. 163, 507–513 (1999). This paper provides the first demonstration that genetically modifying primary human T cells to express an exogenous TCR can confer tumour recognition.

    Article  CAS  PubMed  Google Scholar 

  • Stanislawski, T. et al. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat. Immunol. 2, 962–970 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Morgan, R. A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006). This paper reports the first demonstration that adoptive transfer of TCR engineered T cells can lead to cancer regression in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, L. A. et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114, 535–546 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkhurst, M. R. et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19, 620–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Morgan, R. A. et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36, 133–151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kageyama, S. et al. Adoptive transfer of MAGE-A4 T-cell receptor gene-transduced lymphocytes in patients with recurrent esophageal cancer. Clin. Cancer Res. 21, 2268–2277 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Lu, Y. C. et al. Treatment of patients with metastatic cancer using a major histocompatibility complex class II-restricted T-cell receptor targeting the cancer germline antigen MAGE-A3. J. Clin. Oncol. 35, 3322–3329 (2017). This paper provides the first demonstration that adoptive transfer of CD4+ T cells genetically modified with an HLA class II-restricted TCR can cause cancer regression in diverse solid tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tawara, I. et al. Safety and persistence of WT1-specific T-cell receptor gene-transduced lymphocytes in patients with AML and MDS. Blood 130, 1985–1994 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Doran, S. L. et al. T-cell receptor gene therapy for human papillomavirus-associated epithelial cancers: a first-in-human, phase I/II study. J. Clin. Oncol. 37, 2759–2768 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagarsheth, N. B. et al. TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers. Nat. Med. 27, 419–425 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linette, G. P. et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122, 863–871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Angelo, S. P. et al. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 c259T cells in synovial sarcoma. Cancer Discov. 8, 944–957 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapuis, A. G. et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nat. Med. 25, 1064–1072 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J. et al. Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL. Nature 609, 369–374 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foy, S. P. et al. Non-viral precision T cell receptor replacement for personalized cell therapy. Nature 615, 687–696 (2022). This paper provides the first clinical report demonstrating the feasibility of simultaneously targeting multiple neoantigens using a non-viral TCR integration approach.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcucci, K. T. et al. Retroviral and lentiviral safety analysis of gene-modified T cell products and infused HIV and oncology patients. Mol. Ther. 26, 269–279 (2018).

    Article  CAS  Google Scholar 

  • Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller, T. R. et al. Targeted T cell receptor gene editing provides predictable T cell product function for immunotherapy. Cell Rep. Med. 2, 100374 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaiser, A. D. et al. Towards a commercial process for the manufacture of genetically modified T cells for therapy. Cancer Gene Ther. 22, 72–78 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307–312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah, N. N. et al. Clonal expansion of CAR T cells harboring lentivector integration in the CBL gene following anti-CD22 CAR T-cell therapy. Blood Adv. 3, 2317–2322 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen, C. J., Zhao, Y., Zheng, Z., Rosenberg, S. A. & Morgan, R. A. Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res. 66, 8878–8886 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heemskerk, M. H. et al. Efficiency of T-cell receptor expression in dual-specific T cells is controlled by the intrinsic qualities of the TCR chains within the TCR–CD3 complex. Blood 109, 235–243 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Ahmadi, M. et al. CD3 limits the efficacy of TCR gene therapy in vivo. Blood 118, 3528–3537 (2011).

    Article  CAS  PubMed  Google Scholar 

  • van Loenen, M. M. et al. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc. Natl Acad. Sci. USA 107, 10972–10977 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bendle, G. M. et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat. Med. 16, 565–570, 1p following 570 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, S. A. Of mice, not men: no evidence for graft-versus-host disease in humans receiving T-cell receptor-transduced autologous T cells. Mol. Ther. 18, 1744–1745 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provasi, E. et al. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat. Med. 18, 807–815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berdien, B., Mock, U., Atanackovic, D. & Fehse, B. TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer. Gene Ther. 21, 539–548 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405–409 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggiero, E. et al. CRISPR-based gene disruption and integration of high-avidity, WT1-specific T cell receptors improve antitumor T cell function. Sci. Transl. Med. 14, eabg8027 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Nahmad, A. D. et al. Frequent aneuploidy in primary human T cells after CRISPR–Cas9 cleavage. Nat. Biotechnol. 40, 1807–1813 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishihara, M. et al. NY-ESO-1-specific redirected T cells with endogenous TCR knockdown mediate tumor response and cytokine release syndrome. J. Immunother. Cancer 10, e003811 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webber, B. R. et al. Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors. Nat. Commun. 10, 5222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preece, R. et al. CRISPR-mediated base conversion allows discriminatory depletion of endogenous T cell receptors for enhanced synthetic immunity. Mol. Ther. Methods Clin. Dev. 19, 149–161 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiesa, R. et al. Base-edited CAR7 T cells for relapsed T-cell acute lymphoblastic leukemia. N. Engl. J. Med. 389, 899–910 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Schober, K. et al. Orthotopic replacement of T-cell receptor α- and β-chains with preservation of near-physiological T-cell function. Nat. Biomed. Eng. 3, 974–984 (2019).

    Article  PubMed  Google Scholar 

  • Shy, B. R. et al. High-yield genome engineering in primary cells using a hybrid ssDNA repair template and small-molecule cocktails. Nat. Biotechnol. 41, 521–531 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh, S. A. et al. High-efficiency nonviral CRISPR/Cas9-mediated gene editing of human T cells using plasmid donor DNA. J. Exp. Med. 219, e20211530 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, D. N. et al. Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat. Biotechnol. 38, 44–49 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Cohen, C. J. et al. Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res. 67, 3898–3903 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuball, J. et al. Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 109, 2331–2338 (2007). Together with Cohen et al. (2006) and Cohen et al. (2007), this paper describes commonly used modifications to the TCR constant chains that enhance both the potency and the safety of exogenously expressed TCRs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bialer, G., Horovitz-Fried, M., Ya’acobi, S., Morgan, R. A. & Cohen, C. J. Selected murine residues endow human TCR with enhanced tumor recognition. J. Immunol. 184, 6232–6241 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Sommermeyer, D. & Uckert, W. Minimal amino acid exchange in human TCR constant regions fosters improved function of TCR gene-modified T cells. J. Immunol. 184, 6223–6231 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Davis, J. L. et al. Development of human anti-murine T-cell receptor antibodies in both responding and nonresponding patients enrolled in TCR gene therapy trials. Clin. Cancer Res. 16, 5852–5861 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bethune, M. T. et al. Domain-swapped T cell receptors improve the safety of TCR gene therapy. eLife 5, e19095 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuball, J. et al. Increasing functional avidity of TCR-redirected T cells by removing defined N-glycosylation sites in the TCR constant domain. J. Exp. Med. 206, 463–475 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haga-Friedman, A., Horovitz-Fried, M. & Cohen, C. J. Incorporation of transmembrane hydrophobic mutations in the TCR enhance its surface expression and T cell functional avidity. J. Immunol. 188, 5538–5546 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Robbins, P. F. et al. Single and dual amino acid substitutions in TCR CDRs can enhance antigen-specific T cell functions. J. Immunol. 180, 6116–6131 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Li, Y. et al. Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nat. Biotechnol. 23, 349–354 (2005). This paper reports on the use of phage display libraries for the high-throughput evolution and selection of affinity-enhanced TCRs.

    Article  CAS  PubMed  Google Scholar 

  • Holler, P. D. et al. In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc. Natl Acad. Sci. USA 97, 5387–5392 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dilchert, J., Hofmann, M., Unverdorben, F., Kontermann, R. & Bunk, S. Mammalian display platform for the maturation of bispecific TCR-based molecules. Antibodies 11, 34 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron, B. J. et al. Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci. Transl. Med. 5, 197ra103 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanderson, J. P. et al. Preclinical evaluation of an affinity-enhanced MAGE-A4-specific T-cell receptor for adoptive T-cell therapy. OncoImmunol 9, 1682381 (2020).

    Article  Google Scholar 

  • Hellman, L. M. et al. Improving T cell receptor on-target specificity via structure-guided design. Mol. Ther. 27, 300–313 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, A. M. & Baker, B. M. Engineering the T cell receptor for fun and profit: uncovering complex biology, interrogating the immune system, and targeting disease. Curr. Opin. Struct. Biol. 74, 102358 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, X. et al. Tuning T cell receptor sensitivity through catch bond engineering. Science 376, eabl5282 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibener, L. V. et al. Isolation of a structural mechanism for uncoupling T cell receptor signaling from peptide-MHC binding. Cell 174, 672–687.e27 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole, A. et al. Therapeutic high affinity T cell receptor targeting a KRASG12D cancer neoantigen. Nat. Commun. 13, 5333 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y. et al. High-affinity TCRs generated by phage display provide CD4+ T cells with the ability to recognize and kill tumor cell lines. J. Immunol. 179, 5845–5854 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Border, E. C., Sanderson, J. P., Weissensteiner, T., Gerry, A. B. & Pumphrey, N. J. Affinity-enhanced T-cell receptors for adoptive T-cell therapy targeting MAGE-A10: strategy for selection of an optimal candidate. OncoImmunol 8, e1532759 (2019).

    Article  Google Scholar 

  • Docta, R. Y. et al. Tuning T-cell receptor affinity to optimize clinical risk–benefit when targeting α-fetoprotein-positive liver cancer. Hepatology 69, 2061–2075 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Huang, C. Receptor-Fc fusion therapeutics, traps, and MIMETIBODY technology. Curr. Opin. Biotechnol. 20, 692–699 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Dao, T. et al. Therapeutic bispecific T-cell engager antibody targeting the intracellular oncoprotein WT1. Nat. Biotechnol. 33, 1079–1086 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoogenboom, H. R. et al. Antibody phage display technology and its applications. Immunotechnology 4, 1–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Yang, X. et al. Facile repurposing of peptide–MHC-restricted antibodies for cancer immunotherapy. Nat. Biotechnol. 41, 932–943 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland, C. J. et al. Specificity of bispecific T cell receptors and antibodies targeting peptide-HLA. J. Clin. Invest. 130, 2673–2688 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarmarkovich, M. et al. Cross-HLA targeting of intracellular oncoproteins with peptide-centric CARs. Nature 599, 477–484 (2021). This paper describes the use of peptide-centric antibody binders that recognize the same epitope presented in the context of different HLA alleles as a strategy to enhance the scalability of TCR therapeutics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunbar, J., Knapp, B., Fuchs, A., Shi, J. & Deane, C. M. Examining variable domain orientations in antigen receptors gives insight into TCR-like antibody design. PLoS Comput. Biol. 10, e1003852 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole, D. K. et al. Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity. J. Clin. Invest. 126, 3626 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams, J. J. et al. Structural interplay between germline interactions and adaptive recognition determines the bandwidth of TCR–peptide–MHC cross-reactivity. Nat. Immunol. 17, 87–94 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Liu, C. et al. Validation and promise of a TCR mimic antibody for cancer immunotherapy of hepatocellular carcinoma. Sci. Rep. 12, 12068 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helsen, C. W. et al. The chimeric TAC receptor co-opts the T cell receptor yielding robust anti-tumor activity without toxicity. Nat. Commun. 9, 3049 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Long, A. H. et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baeuerle, P. A. et al. Synthetic TRuC receptors engaging the complete T cell receptor for potent anti-tumor response. Nat. Commun. 10, 2087 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassan, R. et al. Mesothelin-targeting T cell receptor fusion construct cell therapy in refractory solid tumors: phase 1/2 trial interim results. Nat. Med. 29, 2099–2109 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y. et al. Chimeric STAR receptors using TCR machinery mediate robust responses against solid tumors. Sci. Transl. Med. 13, eabb5191 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Oliveira, G. et al. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature 596, 119–125 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevanovic, S. et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science 356, 200–205 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creelan, B. C. et al. Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: a phase 1 trial. Nat. Med. 27, 1410–1418 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linnemann, C. et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat. Med. 21, 81–85 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Parkhurst, M. R. et al. Unique neoantigens arise from somatic mutations in patients with gastrointestinal cancers. Cancer Discov. 9, 1022–1035 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caushi, J. X. et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature 596, 126–132 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Pasetto, A. et al. Tumor- and neoantigen-reactive T-cell receptors can be identified based on their frequency in fresh tumor. Cancer Immunol. Res. 4, 734–743 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Hanada, K. I. et al. A phenotypic signature that identifies neoantigen-reactive T cells in fresh human lung cancers. Cancer Cell 40, 479–493.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira, G. et al. Landscape of helper and regulatory antitumour CD4+ T cells in melanoma. Nature 605, 532–538 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat. Commun. 9, 2724 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328–1334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow, A. et al. The ectonucleotidase CD39 identifies tumor-reactive CD8+ T cells predictive of immune checkpoint blockade efficacy in human lung cancer. Immunity 56, 93–106.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Gros, A. et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest. 124, 2246–2259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberhardt, C. S. et al. Functional HPV-specific PD-1+ stem-like CD8 T cells in head and neck cancer. Nature 597, 279–284 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veatch, J. R. et al. Neoantigen-specific CD4+ T cells in human melanoma have diverse differentiation states and correlate with CD8+ T cell, macrophage, and B cell function. Cancer Cell 40, 393–409.e9 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmadzadeh, M. et al. Tumor-infiltrating human CD4+ regulatory T cells display a distinct TCR repertoire and exhibit tumor and neoantigen reactivity. Sci. Immunol. 4, eaao4310 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, C. J. et al. Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J. Clin. Invest. 125, 3981–3991 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, S. Q. et al. High-throughput determination of the antigen specificities of T cell receptors in single cells. Nat. Biotechnol. https://doi.org/10.1038/nbt.4282 (2018).

  • Gee, M. H. et al. Antigen identification for orphan T cell receptors expressed tumor-infiltrating lymphocytes. Cell 172, 549–563.e16 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Li, G. et al. T cell antigen discovery via trogocytosis. Nat. Methods 16, 183–190 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kula, T. et al. T-scan: a genome-wide method for the systematic discovery of T cell epitopes. Cell 178, 1016–1028.e13 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gejman, R. S. et al. Identification of the targets of T-cell receptor therapeutic agents and cells by use of a high-throughput genetic platform. Cancer Immunol. Res. 8, 672–684 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobson, C. S. et al. Antigen identification and high-throughput interaction mapping by reprogramming viral entry. Nat. Methods 19, 449–460 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Ye, Q. et al. CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor. Clin. Cancer Res. 20, 44–55 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Parkhurst, M. et al. Isolation of T-cell receptors specifically reactive with mutated tumor-associated antigens from tumor-infiltrating lymphocytes based on CD137 expression. Clin. Cancer Res. 23, 2491–2505 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowery, F. J. et al. Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers. Science 375, 877–884 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gros, A. et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat. Med. 22, 433–438 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cafri, G. et al. Memory T cells targeting oncogenic mutations detected in peripheral blood of epithelial cancer patients. Nat. Commun. 10, 449 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neudorfer, J. et al. Reversible HLA multimers (streptamers) for the isolation of human cytotoxic T lymphocytes functionally active against tumor- and virus-derived antigens. J. Immunol. Methods 320, 119–131 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Perica, K. et al. Enrichment and expansion with nanoscale artificial antigen presenting cells for adoptive immunotherapy. ACS Nano 9, 6861–6871 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stronen, E. et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science 352, 1337–1341 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Bassani-Sternberg, M. et al. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat. Commun. 7, 13404 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pai, C. S. et al. Clonal deletion of tumor-specific T cells by interferon-γ confers therapeutic resistance to combination immune checkpoint blockade. Immunity 50, 477–492.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfl, M. & Greenberg, P. D. Antigen-specific activation and cytokine-facilitated expansion of naive, human CD8+ T cells. Nat. Protoc. 9, 950–966 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandran, S. S. et al. Immunogenicity and therapeutic targeting of a public neoantigen derived from mutated PIK3CA. Nat. Med. 28, 946–957 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali, M. et al. T cells targeted to TdT kill leukemic lymphoblasts while sparing normal lymphocytes. Nat. Biotechnol. 40, 488–498 (2022).

    Article  CAS  PubMed  Google Scholar 

  • van der Lee, D. I. et al. Mutated nucleophosmin 1 as immunotherapy target in acute myeloid leukemia. J. Clin. Invest. 129, 774–785 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahn, L. et al. TCR-based therapy for multiple myeloma and other B-cell malignancies targeting intracellular transcription factor BOB1. Blood 129, 1284–1295 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Falkenburg, W. J. et al. Allogeneic HLA-A*02-restricted WT1-specific T cells from mismatched donors are highly reactive but show off-target promiscuity. J. Immunol. 187, 2824–2833 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Bijen, H. M. et al. Preclinical strategies to identify off-target toxicity of high-affinity TCRs. Mol. Ther. 26, 1206–1214 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theobald, M. et al. Tolerance to p53 by A2.1-restricted cytotoxic T lymphocytes. J. Exp. Med. 185, 833–841 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L. P. et al. Transgenic mice with a diverse human T cell antigen receptor repertoire. Nat. Med. 16, 1029–1034 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Moore, M. J. et al. Humanization of T cell-mediated immunity in mice. Sci. Immunol. 6, eabj4026 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Lonberg, N. Human antibodies from transgenic animals. Nat. Biotechnol. 23, 1117–1125 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Obenaus, M. et al. Identification of human T-cell receptors with optimal affinity to cancer antigens using antigen-negative humanized mice. Nat. Biotechnol. 33, 402–407 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Poncette, L., Chen, X., Lorenz, F. K. & Blankenstein, T. Effective NY-ESO-1-specific MHC II-restricted T cell receptors from antigen-negative hosts enhance tumor regression. J. Clin. Invest. 129, 324–335 (2019).

    Article  PubMed  Google Scholar 

  • Klebanoff, C. A., Rosenberg, S. A. & Restifo, N. P. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat. Med. 22, 26–36 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  • GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  Google Scholar 

  • Parker, K. R. et al. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 183, 126–142.e17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, L. et al. Variation and genetic control of protein abundance in humans. Nature 499, 79–82 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas, G. G. Jr., D’Cruz, O. J. & De Bault, L. E. Distribution of human leukocyte antigen-ABC and -D/DR antigens in the unfixed human testis. Am. J. Reprod. Immunol. Microbiol. 18, 47–51 (1988).

    Article  PubMed  Google Scholar 

  • Felix, N. J. & Allen, P. M. Specificity of T-cell alloreactivity. Nat. Rev. Immunol. 7, 942–953 (2007).

    Article  CAS  PubMed  Google Scholar 

  • van Amerongen, R. A. et al. Human iPSC-derived preclinical models to identify toxicity of tumor-specific T cells with clinical potential. Mol. Ther. Methods Clin. Dev. 28, 249–261 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunert, A., Obenaus, M., Lamers, C. H. J., Blankenstein, T. & Debets, R. T-cell receptors for clinical therapy: in vitro assessment of toxicity risk. Clin. Cancer Res. 23, 6012–6020 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Riley, T. P. et al. T cell receptor cross-reactivity expanded by dramatic peptide–MHC adaptability. Nat. Chem. Biol. 14, 934–942 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birnbaum, M. E. et al. Deconstructing the peptide–MHC specificity of T cell recognition. Cell 157, 1073–1087 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, D. B. et al. Specificity and degeneracy of T cells. Mol. Immunol. 40, 1047–1055 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Whalley, T. et al. GPU-accelerated discovery of pathogen-derived molecular mimics of a T-cell insulin epitope. Front. Immunol. 11, 296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholtalbers, J. et al. TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression. Genome Med. 7, 118 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014). This clinical case report provides the first evidence that HLA class II-restricted CD4+ T cells targeting a private neoantigen can mediate durable tumour regression in a patient with cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dijkstra, K. K. et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174, 1586–1598.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demmers, L. C. et al. Single-cell derived tumor organoids display diversity in HLA class I peptide presentation. Nat. Commun. 11, 5338 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science 364, 952–955 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Axelrod, M. L., Cook, R. S., Johnson, D. B. & Balko, J. M. Biological consequences of MHC-II expression by tumor cells in cancer. Clin. Cancer Res. 25, 2392–2402 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Hos, B. J. et al. Cancer-specific T helper shared and neo-epitopes uncovered by expression of the MHC class II master regulator CIITA. Cell Rep. 41, 111485 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Zeh, H. J. 3rd, Perry-Lalley, D., Dudley, M. E., Rosenberg, S. A. & Yang, J. C. High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J. Immunol. 162, 989–994 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Dutoit, V. et al. Heterogeneous T-cell response to MAGE-A10(254–262): high avidity-specific cytolytic T lymphocytes show superior antitumor activity. Cancer Res. 61, 5850–5856 (2001).

    CAS  PubMed  Google Scholar 

  • Johnson, L. A. et al. Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. J. Immunol. 177, 6548–6559 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Slifka, M. K. & Whitton, J. L. Functional avidity maturation of CD8+ T cells without selection of higher affinity TCR. Nat. Immunol. 2, 711–717 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Gallegos, A. M. et al. Control of T cell antigen reactivity via programmed TCR downregulation. Nat. Immunol. 17, 379–386 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy, C. S. et al. Distinct TCR signaling pathways drive proliferation and cytokine production in T cells. Nat. Immunol. 14, 262–270 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong, S. et al. T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy. Proc. Natl Acad. Sci. USA 110, 6973–6978 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sim, M. J. W. et al. High-affinity oligoclonal TCRs define effective adoptive T cell therapy targeting mutant KRAS-G12D. Proc. Natl Acad. Sci. USA 117, 12826–12835 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, D., Gallagher, D. T., Gowthaman, R., Pierce, B. G. & Mariuzza, R. A. Structural basis for oligoclonal T cell recognition of a shared p53 cancer neoantigen. Nat. Commun. 11, 2908 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devlin, J. R. et al. Structural dissimilarity from self drives neoepitope escape from immune tolerance. Nat. Chem. Biol. 16, 1269–1276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margulies, D. H., Plaksin, D., Khilko, S. N. & Jelonek, M. T. Studying interactions involving the T-cell antigen receptor by surface plasmon resonance. Curr. Opin. Immunol. 8, 262–270 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Tian, S., Maile, R., Collins, E. J. & Frelinger, J. A. CD8+ T cell activation is governed by TCR–peptide/MHC affinity, not dissociation rate. J. Immunol. 179, 2952–2960 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Huang, J. et al. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464, 932–936 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, B. et al. 2D TCR–pMHC–CD8 kinetics determines T-cell responses in a self-antigen-specific TCR system. Eur. J. Immunol. 44, 239–250 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Gannon, P. O. et al. Quantitative TCR:pMHC dissociation rate assessment by NTAmers reveals antimelanoma T cell repertoires enriched for high functional competence. J. Immunol. 195, 356–366 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Hebeisen, M. et al. Identification of rare high-avidity, tumor-reactive CD8+ T cells by monomeric TCR-ligand off-rates measurements on living cells. Cancer Res. 75, 1983–1991 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Nauerth, M. et al. Flow cytometry-based TCR-ligand Koff rate assay for fast avidity screening of even very small antigen-specific T cell populations ex vivo. Cytom. A 89, 816–825 (2016).

    Article  CAS  Google Scholar 

  • Laugel, B. et al. Different T cell receptor affinity thresholds and CD8 coreceptor dependence govern cytotoxic T lymphocyte activation and tetramer binding properties. J. Biol. Chem. 282, 23799–23810 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, J. et al. Neoantigen-specific CD8 T cells with high structural avidity preferentially reside in and eliminate tumors. Nat. Commun. 14, 3188 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, B. Y. et al. Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model. JCI Insight 3, e99488 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Allard, M. et al. TCR-ligand dissociation rate is a robust and stable biomarker of CD8+ T cell potency. JCI Insight 2, e92570 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gattinoni, L. et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. 20S2, 907–912 (2005).

    Article  Google Scholar 

  • Klebanoff, C. A., Khong, H. T., Antony, P. A., Palmer, D. C. & Restifo, N. P. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol. 26, 111–117 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulos, C. M. et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J. Clin. Invest. 117, 2197–2204 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klebanoff, C. A. et al. Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice. Clin. Cancer Res. 17, 5343–5352 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandran, S. S. et al. Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: a single-centre, two-stage, single-arm, phase 2 study. Lancet Oncol. 18, 792–802 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnaud, M. et al. Sensitive identification of neoantigens and cognate TCRs in human solid tumors. Nat. Biotechnol. 40, 656–660 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Leko, V. et al. Identification of neoantigen-reactive tumor-infiltrating lymphocytes in primary bladder cancer. J. Immunol. 202, 3458–3467 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Zacharakis, N. et al. Breast cancers are immunogenic: immunologic analyses and a phase II pilot clinical trial using mutation-reactive autologous lymphocytes. J. Clin. Oncol. 40, 1741–1754 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevanovic, S. et al. A phase II study of tumor-infiltrating lymphocyte therapy for human papillomavirus-associated epithelial cancers. Clin. Cancer Res. 25, 1486–1493 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Hanada, K., Perry-Lalley, D. M., Ohnmacht, G. A., Bettinotti, M. P. & Yang, J. C. Identification of fibroblast growth factor-5 as an overexpressed antigen in multiple human adenocarcinomas. Cancer Res. 61, 5511–5516 (2001).

    CAS  PubMed  Google Scholar 

  • McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goff, S. L. et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J. Clin. Oncol. 34, 2389–2397 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarnaik, A. A. et al. Lifileucel, a tumor-infiltrating lymphocyte therapy, in metastatic melanoma. J. Clin. Oncol. 39, 2656–2666 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohaan MW et al. Tumor-Infiltrating Lymphocyte Therapy or Ipilimumab in Advanced Melanoma. N Engl J Med. 387, 2113-2125 (2022). This randomized phase III clinical trial demonstrates that adoptive transfer of TILs results in significantly longer progression-free survival compared with anti-CTLA4 as a salvage therapy following anti-PD1 treatment failure.

    Article  CAS  PubMed  Google Scholar 

  • Dafni, U. et al. Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: a systematic review and meta-analysis. Ann. Oncol. 30, 1902–1913 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Radvanyi, L. G. et al. Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin. Cancer Res. 18, 6758–6770 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seitter, S. J. et al. Impact of prior treatment on the efficacy of adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma. Clin. Cancer Res. 27, 5289–5298 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besser, M. J. et al. Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin. Cancer Res. 19, 4792–4800 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Levi, S. T. et al. Neoantigen identification and response to adoptive cell transfer in anti PD-1 naive and experienced patients with metastatic melanoma. Clin. Cancer Res. 28, 3042–3052 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202–206 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauss, M. et al. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma. Nat. Commun. 8, 1738 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kristensen, N. P. et al. Neoantigen-reactive CD8+ T cells affect clinical outcome of adoptive transfer with tumor-infiltrating lymphocytes in melanoma. J. Clin. Invest. 132, e150535 (2021).

    Article  Google Scholar 

  • Algazi, A. P. et al. Clinical outcomes in metastatic uveal melanoma treated with PD-1 and PD-L1 antibodies. Cancer 122, 3344–3353 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Tran, E. et al. T-cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 375, 2255–2262 (2016). Together with Doran et al. (2019) and Nagarsheth et al. (2021), this clinical report highlights diverse mechanisms of acquired immune resistance to adoptively transferred CD8+ T cells expressing TCRs specific for HLA class I-restricted epitopes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klebanoff, C. A. & Wolchok, J. D. Shared cancer neoantigens: making private matters public. J. Exp. Med. 215, 5–7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler, M. O. et al. Establishment of antitumor memory in humans using in vitro-educated CD8+ T cells. Sci. Transl. Med. 3, 80ra34 (2011).

    Article  PubMed  Google Scholar 

  • Chapuis, A. G. et al. T-cell therapy using interleukin-21-primed cytotoxic T-cell lymphocytes combined with cytotoxic T-cell lymphocyte antigen-4 blockade results in long-term cell persistence and durable tumor regression. J. Clin. Oncol. 34, 3787–3795 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yee, C. et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc. Natl Acad. Sci. USA 99, 16168–16173 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khammari, A. et al. Treatment of metastatic melanoma with autologous Melan-A/MART-1-specific cytotoxic T lymphocyte clones. J. Invest. Dermatol. 129, 2835–2842 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Hunder, N. N. et al. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med. 358, 2698–2703 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandran, S. S. et al. Persistence of CTL clones targeting melanocyte differentiation antigens was insufficient to mediate significant melanoma regression in humans. Clin. Cancer Res. 21, 534–543 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Dudley, M. E. et al. Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J. Immunother. 24, 363–373 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Chapuis, A. G. et al. Transferred melanoma-specific CD8+ T cells persist, mediate tumor regression, and acquire central memory phenotype. Proc. Natl Acad. Sci. USA 109, 4592–4597 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caballero, O. L. & Chen, Y. T. Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci. 100, 2014–2021 (2009).

    Article  CAS  PubMed  Google Scholar 

  • De Smet, C., Lurquin, C., Lethe, B., Martelange, V. & Boon, T. DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol. Cell Biol. 19, 7327–7335 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapuis, A. G. et al. Tracking the fate and origin of clinically relevant adoptively transferred CD8+ T cells in vivo. Sci. Immunol. 2, eaal2568 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Klebanoff, C. A., Gattinoni, L. & Restifo, N. P. Sorting through subsets: which T-cell populations mediate highly effective adoptive immunotherapy? J. Immunother. 35, 651–660 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandran, S. S. et al. Tumor-specific effector CD8+ T cells that can establish immunological memory in humans after adoptive transfer are marked by expression of IL7 receptor and c-myc. Cancer Res. 75, 3216–3226 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, A. et al. The stoichiometric production of IL-2 and IFN-γ mRNA defines memory T cells that can self-renew after adoptive transfer in humans. Sci. Transl. Med. 4, 149ra120 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Klebanoff, C. A. et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc. Natl Acad. Sci. USA 102, 9571–9576 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graef, P. et al. Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8+ central memory T cells. Immunity 41, 116–126 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, T. N. et al. T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy. J. Clin. Invest. 129, 1551–1565 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Oda, S. K. et al. A Fas–4-1BB fusion protein converts a death to a pro-survival signal and enhances T cell therapy. J. Exp. Med. 217, e20191166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth, T. L. et al. Pooled knockin targeting for genome engineering of cellular immunotherapies. Cell 181, 728–744.e21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silk, J. D. et al. Engineering cancer antigen-specific T cells to overcome the immunosuppressive effects of TGF-β. J. Immunol. 208, 169–180 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Stromnes, I. M. et al. Abrogating Cbl-b in effector CD8+ T cells improves the efficacy of adoptive therapy of leukemia in mice. J. Clin. Invest. 120, 3722–3734 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer, D. C. et al. Cish actively silences TCR signaling in CD8+ T cells to maintain tumor tolerance. J. Exp. Med. 212, 2095–2113 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carnevale, J. et al. RASA2 ablation in T cells boosts antigen sensitivity and long-term function. Nature 609, 174–182 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duval, L. et al. Adoptive transfer of allogeneic cytotoxic T lymphocytes equipped with a HLA-A2 restricted MART-1 T-cell receptor: a phase I trial in metastatic melanoma. Clin. Cancer Res. 12, 1229–1236 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Borbulevych, O. Y., Santhanagopolan, S. M., Hossain, M. & Baker, B. M. TCRs used in cancer gene therapy cross-react with MART-1/Melan-A tumor antigens via distinct mechanisms. J. Immunol. 187, 2453–2463 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama, H. WT1 (Wilms’ tumor gene 1): biology and cancer Immunotherapy. Jpn. J. Clin. Oncol. 40, 377–387 (2010).

    Article  PubMed  Google Scholar 

  • Levine, A. J., Momand, J. & Finlay, C. A. The p53 tumour suppressor gene. Nature 351, 453–456 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Theobald, M., Biggs, J., Dittmer, D., Levine, A. J. & Sherman, L. A. Targeting p53 as a general tumor antigen. Proc. Natl Acad. Sci. USA 92, 11993–11997 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, C. J. et al. Recognition of fresh human tumor by human peripheral blood lymphocytes transduced with a bicistronic retroviral vector encoding a murine anti-p53 TCR. J. Immunol. 175, 5799–5808 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Theoret, M. R. et al. Relationship of p53 overexpression on cancers and recognition by anti-p53 T cell receptor-transduced T cells. Hum. Gene Ther. 19, 1219–1232 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins, P. F. et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin. Cancer Res. 21, 1019–1027 (2015).

    Article  CAS  PubMed  Google Scholar 

  • D’Angelo, S. P. et al. Primary efficacy and safety of letetresgene autoleucel (lete-cel; GSK3377794) pilot study in patients with advanced and metastatic myxoid/round cell liposarcoma (MRCLS). J. Clin. Oncol. 40, 11500–11500 (2022).

    Article  Google Scholar 

  • Kerkar, S. P. et al. MAGE-A is more highly expressed than NY-ESO-1 in a systematic immunohistochemical analysis of 3668 cases. J. Immunother. 39, 181–187 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnasamy, N. et al. A TCR targeting the HLA-A*0201-restricted epitope of MAGE-A3 recognizes multiple epitopes of the MAGE-A antigen superfamily in several types of cancer. J. Immunol. 186, 685–696 (2011).

    Article  CAS  PubMed  Google Scholar 

  • D’Angelo, S. P. et al. Identification of response stratification factors from pooled efficacy analyses of afamitresgene autoleucel (“Afami-cel” [formerly ADP-A2M4]) in metastatic synovial sarcoma and myxoid/round cell liposarcoma phase 1 and phase 2 trials. J. Clin. Oncol. 40 (Suppl. 16), 11562 (2022).

    Article  Google Scholar 

  • Hong, D. S. et al. Autologous T cell therapy for MAGE-A4+ solid cancers in HLA-A*02+ patients: a phase 1 trial. Nat. Med. 29, 104–114 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, D. S. et al. 540P safety and efficacy from the SURPASS trial with ADP-A2M4CD8, a SPEAR T-cell therapy incorporating a CD8α co-receptor and an affinity optimized TCR targeting MAGE-A4. Ann. Oncol. 32, S604–S605 (2021).

    Article  Google Scholar 

  • Hong, D. S. et al. Phase 1 clinical trial evaluating the safety and anti-tumor activity of ADP-A2M10 SPEAR T-cells in patients with MAGE-A10+ head and neck, melanoma, or urothelial tumors. Front. Oncol. 12, 818679 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumenschein, G. R. et al. Phase I clinical trial evaluating the safety and efficacy of ADP-A2M10 SPEAR T cells in patients with MAGE-A10+ advanced non-small cell lung cancer. J. Immunother. Cancer 10, e003581 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, Y., Zou, R., Wang, J., Wang, Z. W. & Zhu, X. The role of the cancer testis antigen PRAME in tumorigenesis and immunotherapy in human cancer. Cell Prolif. 53, e12770 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wermke, M. et al. Safety and anti-tumor activity of TCR-engineered autologous, PRAME-directed T cells across multiple advanced solid cancers at low doses—clinical update on the ACTengine® IMA203 trial. J. Immunother. Cancer 9, A1009–A1009 (2021).

    Article  Google Scholar 

  • Schiller, J. T. & Lowy, D. R. Vaccines to prevent infections by oncoviruses. Annu. Rev. Microbiol. 64, 23–41 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, H. C., Shuda, M., Chang, Y. & Moore, P. S. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319, 1096–1100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing, L. C. et al. Prevalent and diverse intratumoral oncoprotein-specific CD8+ T cells within polyomavirus-driven Merkel cell carcinomas. Cancer Immunol. Res. 8, 648–659 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller, N. J. et al. Tumor-infiltrating merkel cell polyomavirus-specific T cells are diverse and associated with improved patient survival. Cancer Immunol. Res. 5, 137–147 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veatch, J. et al. Merkel polyoma virus specific T-cell receptor transgenic T-cell therapy in PD-1 inhibitor refractory Merkel cell carcinoma. J. Clin. Oncol. 40, 9549 (2022).

    Article  Google Scholar 

  • Leidner, R. et al. Neoantigen T-cell receptor gene therapy in pancreatic cancer. N. Engl. J. Med. 386, 2112–2119 (2022). Together with Tran et al. (2016), this paper demonstrates that adoptive transfer of T cells targeting an epitope derived from the recurrent KRAS G12D hotspot mutation can mediate tumour regression in common solid tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S. P. et al. Adoptive cellular therapy with autologous tumor-infiltrating lymphocytes and T-cell receptor-engineered T cells targeting common p53 neoantigens in human solid tumors. Cancer Immunol. Res. 10, 932–946 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo, W. et al. Immunologic recognition of a shared p53 mutated neoantigen in a patient with metastatic colorectal cancer. Cancer Immunol. Res. 7, 534–543 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middleton, M. R. et al. Tebentafusp, a TCR/anti-CD3 bispecific fusion protein targeting gp100, potently activated antitumor immune responses in patients with metastatic melanoma. Clin. Cancer Res. 26, 5869–5878 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvajal, R. D. et al. Clinical and molecular response to tebentafusp in previously treated patients with metastatic uveal melanoma: a phase 2 trial. Nat. Med. 28, 2364–2373 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Wang, M. et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 382, 1331–1342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abramson, J. S. et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 396, 839–852 (2020).

    Article  PubMed  Google Scholar 

  • Shah, B. D. et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 398, 491–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Munshi, N. C. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384, 705–716 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Mungall, A. J. et al. The DNA sequence and analysis of human chromosome 6. Nature 425, 805–811 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Donoghue, M. T. A., Schram, A. M., Hyman, D. M. & Taylor, B. S. Discovery through clinical sequencing in oncology. Nat. Cancer 1, 774–783 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenbaum, E. et al. HLA genotyping in synovial sarcoma: identifying HLA-A*02 and its association with clinical outcome. Clin. Cancer Res. 26, 5448–5455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montesion, M. et al. Somatic HLA class I loss is a widespread mechanism of immune evasion which refines the use of tumor mutational burden as a biomarker of checkpoint inhibitor response. Cancer Discov. 11, 282–292 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Doebele, R. C. et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol. 21, 271–282 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Hong, D. S. et al. Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 21, 531–540 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017). This paper provides the first comprehensive demonstration that a genomic biomarker (MSI-high) can be used to enrich for patients with diverse common solid cancers who are likely to respond to a single-agent cancer immunotherapy, such as anti-PD1 immune checkpoint blockade.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marabelle, A. et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 21, 1353–1365 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Lipsitz, Y. Y. et al. A roadmap for cost-of-goods planning to guide economic production of cell therapy products. Cytotherapy 19, 1383–1391 (2017).

    Article  PubMed  Google Scholar 

  • Iriguchi, S. et al. A clinically applicable and scalable method to regenerate T-cells from iPSCs for off-the-shelf T-cell immunotherapy. Nat. Commun. 12, 430 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morton, L. T. et al. T cell receptor engineering of primary NK cells to therapeutically target tumors and tumor immune evasion. J. Immunother. Cancer 10, e003715 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore, T. et al. Clinical and immunologic evaluation of three metastatic melanoma patients treated with autologous melanoma-reactive TCR-transduced T cells. Cancer Immunol. Immunother. 67, 311–325 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Martino, M.D. et al. Translating Science into Survival: Report on the Sixth International Cancer Immunotherapy Conference. Cancer Immunol Res. 11, 145–149 (2023).

    Article  PubMed  Google Scholar 

  • Arstila, T. P. et al. A direct estimate of the human αβ T cell receptor diversity. Science 286, 958–961 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Qi, Q. et al. Diversity and clonal selection in the human T-cell repertoire. Proc. Natl Acad. Sci. USA 111, 13139–13144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkenschlager, M. et al. How many thymocytes audition for selection? J. Exp. Med. 186, 1149–1158 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Sewell, A. K. Why must T cells be cross-reactive? Nat. Rev. Immunol. 12, 669–677 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wooldridge, L. et al. A single autoimmune T cell receptor recognizes more than a million different peptides. J. Biol. Chem. 287, 1168–1177 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Scott, D. R., Borbulevych, O. Y., Piepenbrink, K. H., Corcelli, S. A. & Baker, B. M. Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity, specificity, and binding mechanism. J. Mol. Biol. 414, 385–400 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colf, L. A. et al. How a single T cell receptor recognizes both self and foreign MHC. Cell 129, 135–146 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Borbulevych, O. Y., Piepenbrink, K. H. & Baker, B. M. Conformational melding permits a conserved binding geometry in TCR recognition of foreign and self molecular mimics. J. Immunol. 186, 2950–2958 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Sarkizova, S. et al. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat. Biotechnol. 38, 199–209 (2020).

    Article  CAS  PubMed  Google Scholar