Synthetic microbiology in sustainability applications – Nature Reviews Microbiology

  • IPCC. Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P .R. et al.) (IPCC, 2019).

  • IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) (IPCC, 2022).

  • Jansson, C. G. & Northen, T. Calcifying cyanobacteria — the potential of biomineralization for carbon capture and storage. Curr. Opin. Biotechnol. 21, 365–371 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Aswegen, P. C., van Niekerk, J. & Olivier, W. in Biomining (eds Rawlings, D. E. & Johnson, D. B.) 1–33 (Springer, 2007).

  • Li, J., Yang, H., Tong, L. & Sand, W. Some aspects of industrial heap bioleaching technology: from basics to practice. Miner. Process. Extr. Metall. Rev. 43, 510–528 (2022).

    Article 

    Google Scholar
     

  • Marcellin, E. et al. Low carbon fuels and commodity chemicals from waste gases — systematic approach to understand energy metabolism in a model acetogen. Green Chem. 18, 3020–3028 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hwang, I. Y. et al. Biological conversion of methane to chemicals and fuels: technical challenges and issues. Appl. Microbiol. Biotechnol. 102, 3071–3080 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torella, J. P. et al. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system. Proc. Natl Acad. Sci. USA 112, 2337–2342 (2015). This article introduces a novel hybrid organic–inorganic system that converts solar energy directly into biomass.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liew, F. E. et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nat. Biotechnol. 40, 335–344 (2022). This article demonstrates the potential for commodity chemical production at industrial scale using acetogen-based gas fermentation.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klemenčič, M. et al. in MicroalgaeBased Biofuels and Bioproducts (eds Gonzalez-Fernandez, C. & Muñoz, R.) 305–325 (Woodhead, 2017).

  • Liu, C., Colón, B. C., Ziesack, M., Silver, P. A. & Nocera, D. G. Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016). This article showcases the potential of genetic engineering by improving a hybrid inorganic–organic solar-to-biomass system.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nangle, S. N. et al. Valorization of CO2 through lithoautotrophic production of sustainable chemicals in Cupriavidus necator. Metab. Eng. 62, 207–220 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. S. et al. Production of fatty acids in Ralstonia eutropha H16 by engineering β-oxidation and carbon storage. PeerJ 3, e1468 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodríguez, Y., Firmino, P. I. M., Pérez, V., Lebrero, R. & Muñoz, R. Biogas valorization via continuous polyhydroxybutyrate production by Methylocystis hirsuta in a bubble column bioreactor. Waste Manag. 113, 395–403 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Raberg, M., Volodina, E., Lin, K. & Steinbüchel, A. Ralstonia eutropha H16 in progress: applications beside PHAs and establishment as production platform by advanced genetic tools. Crit. Rev. Biotechnol. 38, 494–510 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, B. et al. Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique. Biotechnol. Biofuels 11, 172 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Averesch, N. J. et al. High-performance polyesters from carbon dioxide — novel polyhydroxyarylates from engineered Cupriavidus necator. Preprint at bioRxiv https://doi.org/10.1101/2021.12.12.472320 (2023).

  • Cantera, S. et al. A systematic comparison of ectoine production from upgraded biogas using Methylomicrobium alcaliphilum and a mixed haloalkaliphilic consortium. Waste Manag. 102, 773–781 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sherbo, R. S., Silver, P. A. & Nocera, D. G. Riboflavin synthesis from gaseous nitrogen and carbon dioxide by a hybrid inorganic-biological system. Proc. Natl Acad. Sci. USA 119, e2210538119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khoshnevisan, B., Tsapekos, P., Zhang, Y., Valverde-Pérez, B. & Angelidaki, I. Urban biowaste valorization by coupling anaerobic digestion and single cell protein production. Bioresour. Technol. 290, 121743 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zha, X. et al. Bioconversion of wastewater to single cell protein by methanotrophic bacteria. Bioresour. Technol. 320, 124351 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Graham, A. E. & Ledesma-Amaro, R. The microbial food revolution. Nat. Commun. 14, 2231 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clomburg, J. M., Crumbley, A. M. & Gonzalez, R. Industrial biomanufacturing: the future of chemical production. Science 355, aag0804 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Cho, J. S., Kim, G. B., Eun, H., Moon, C. W. & Lee, S. Y. Designing microbial cell factories for the production of chemicals. JACS Au 2, 1781–1799 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crater, J. S. & Lievense, J. C. Scale-up of industrial microbial processes. FEMS Microbiol. Lett. 365, fny138 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. Y. et al. A comprehensive metabolic map for production of bio-based chemicals. Nat. Catal. 2, 18–33 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wehrs, M. et al. Engineering robust production microbes for large-scale cultivation. Trends Microbiol. 27, 524–537 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nikel, P. I. & de Lorenzo, V. Pseudomonas putida as a functional chassis for industrial biocatalysis: from native biochemistry to trans-metabolism. Metab. Eng. 50, 142–155 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cordell, W. T., Avolio, G., Takors, R. & Pfleger, B. F. Milligrams to kilograms: making microbes work at scale. Trends Biotechnol. 41, 1442–1457 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fabris, M. et al. Emerging technologies in algal biotechnology: toward the establishment of a sustainable, algae-based bioeconomy. Front. Plant Sci. 11, 279 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanner, R. S., Miller, L. M. & Yang, D. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int. J. Syst. Bacteriol. 43, 232–236 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takors, R. et al. Using gas mixtures of CO, CO2 and H2 as microbial substrates: the do’s and don’ts of successful technology transfer from laboratory to production scale. Microb. Biotechnol. 11, 606–625 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LanzaTech. New waste-to-ethanol facility in Japan turns municipal solid waste into products. https://lanzatech.com/new-waste-to-ethanol-facility-in-japan-turns-municipal-solid-waste-into-products/ (2022).

  • Bioenergy International. LanzaTech commission world’s first commercial waste gas to ethanol plant. https://bioenergyinternational.com/lanzatech-commission-worlds-first-commercial-waste-gas-ethanol-plant-china/ (2018).

  • Sahoo, K. K., Goswami, G. & Das, D. Biotransformation of methane and carbon dioxide into high-value products by methanotrophs: current state of art and future prospects. Front. Microbiol. 12, 636486 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pieja, A. J., Morse, M. C. & Cal, A. J. Methane to bioproducts: the future of the bioeconomy? Curr. Opin. Chem. Biol. 41, 123–131 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, A. D. & Lee, E. Y. Engineered methanotrophy: a sustainable solution for methane-based industrial biomanufacturing. Trends Biotechnol. 39, 381–396 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cantera, S. et al. Bio-conversion of methane into high profit margin compounds: an innovative, environmentally friendly and cost-effective platform for methane abatement. World J. Microbiol. Biotechnol. 35, 16 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Cantera, S. et al. Technologies for the bioconversion of methane into more valuable products. Curr. Opin. Biotechnol. 50, 128–135 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Claassens, N. J. et al. Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator. Metab. Eng. 62, 30–41 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alagesan, S. et al. Functional genetic elements for controlling gene expression in Cupriavidus necator H16. Appl. Environ. Microbiol. 84, e00878-18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sydow, A. et al. Expanding the genetic tool box for Cupriavidus necator by a stabilized L-rhamnose inducible plasmid system. J. Biotechnol. 263, 1–10 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179, 1255–1263.e12 (2019). This article demonstrates the ability of synthetic microbiologists to use continuous evolution to rewire a heterotrophic organism to autotrophy.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. et al. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat. Chem. Biol. 16, 538–545 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, F. Y.-H., Jung, H.-W., Tsuei, C.-Y. & Liao, J. C. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol. Cell 182, 933–946.e14 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keller, P. et al. Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle. Nat. Commun. 13, 5243 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weijma, J., Wolthoorn, A. & Huisman, J. Solutions in practice for removal of selenium and molybdenum. Proc. Eur. Metall. Conf. EMC 2007, 519–527 (2007).


    Google Scholar
     

  • Hageman, S. P. W., Weijden, R. D., van der, Stams, A. J. M., van Cappellen, P. & Buisman, C. J. N. Microbial selenium sulfide reduction for selenium recovery from wastewater. J. Hazard. Mater. 329, 110–119 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeswiet, J. & Szekeres, A. Energy consumption in mining comminution. Procedia CIRP 48, 140–145 (2016).

    Article 

    Google Scholar
     

  • Allen, M. A high-level study into mining energy use for the key mineral commodities of the future. CEEC International https://www.ceecthefuture.org/resources/mining-energy-consumption-2021 (2021).

  • Johnson, D. B. Biomining goes underground. Nat. Geosci. 8, 165–166 (2015).

    Article 

    Google Scholar
     

  • Pakostova, E., Grail, B. M. & Johnson, D. B. Indirect oxidative bioleaching of a polymetallic black schist sulfide ore. Miner. Eng. 106, 102–107 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bomberg, M., Miettinen, H. & Kinnunen, P. The diverse indigenous bacterial community in the Rudna mine does not cause dissolution of copper from Kupferschiefer in oxic conditions. Minerals 12, 366 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Vera, M., Schippers, A. & Sand, W. Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation — part A. Appl. Microbiol. Biotechnol. 97, 7529–7541 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riekkola-Vanhanen, M. & Palmu, L. in Ni-Co 2013 (eds Battle, T. et al.) 269–278 (Springer, 2016).

  • Olson, G. J. & Clark, T. R. Bioleaching of molybdenite. Hydrometallurgy 93, 10–15 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Vahidi, E. & Zhao, F. in REWAS 2016: Towards Materials Resource Sustainability (eds Kirchain, R. E. et al.) 113–120 (Springer, 2016).

  • Arshi, P. S., Vahidi, E. & Zhao, F. Behind the scenes of clean energy: the environmental footprint of rare earth products. ACS Sustain. Chem. Eng. 6, 3311–3320 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cheisson, T. & Schelter, E. J. Rare earth elements: Mendeleev’s bane, modern marvels. Science 363, 489–493 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Voncken, J. H. L. The Rare Earth Elements (Springer, 2016).

  • Shin, D., Kim, J., Kim, B., Jeong, J. & Lee, J. Use of phosphate solubilizing bacteria to leach rare earth elements from monazite-bearing ore. Minerals 5, 189–202 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Corbett, M. K., Eksteen, J. J., Niu, X.-Z., Croue, J.-P. & Watkin, E. L. J. Interactions of phosphate solubilising microorganisms with natural rare-earth phosphate minerals: a study utilizing Western Australian monazite. Bioprocess. Biosyst. Eng. 40, 929–942 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, Q., Wu, X., Wang, J. & Ding, X. Phosphate solubilization and gene expression of phosphate-solubilizing bacterium Burkholderia multivorans WS-FJ9 under different levels of soluble phosphate. J. Microbiol. Biotechnol. 27, 844–855 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fathollahzadeh, H., Becker, T., Eksteen, J. J., Kaksonen, A. H. & Watkin, E. L. J. Microbial contact enhances bioleaching of rare earth elements. Bioresour. Technol. Rep. 3, 102–108 (2018).

    Article 

    Google Scholar
     

  • Zhang, L. et al. Bioleaching of rare earth elements from bastnaesite-bearing rock by actinobacteria. Chem. Geol. 483, 544–557 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cockell, C. S. et al. Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity. Nat. Commun. 11, 5523 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmitz, A. M. et al. Generation of a Gluconobacter oxydans knockout collection for improved extraction of rare earth elements. Nat. Commun. 12, 6693 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmitz, A. M. et al. High efficiency rare earth element biomining with systems biology guided engineering of Gluconobacter oxydans. Preprint at bioRxiv https://doi.org/10.1101/2023.02.09.527855 (2023).

  • Mattocks, J. A. et al. Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer. Nature 618, 87–93 (2023). This article reports the discovery and structure of a novel dimeric lanmodulin and demonstrates its utility through the creation of a single-stage purification system capable of separating heavy and light rare earth elements to >98% purity.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cook, E. C., Featherston, E. R., Showalter, S. A. & Cotruvo, J. A. Structural basis for rare earth element recognition by Methylobacterium extorquens lanmodulin. Biochemistry 58, 120–125 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deblonde, G. J.-P. et al. Selective and efficient biomacromolecular extraction of rare-earth elements using lanmodulin. Inorg. Chem. 59, 11855–11867 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Featherston, E. R. & Cotruvo, J. A. The biochemistry of lanthanide acquisition, trafficking, and utilization. Biochim. Biophys. Acta Mol. Cell Res. 1868, 118864 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zytnick, A. M. et al. Discovery and characterization of the first known biological lanthanide chelator. Preprint at bioRxiv https://doi.org/10.1101/2022.01.19.476857 (2023).

  • Wegner, C.-E. et al. Extracellular and intracellular lanthanide accumulation in the methylotrophic Beijerinckiaceae bacterium RH AL1. Appl. Environ. Microbiol. 87, e03144–20 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Medin, S. et al. Genomic characterization of rare earth binding by Shewanella oneidensis. Sci. Rep. 13, 15975 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, Z. et al. Bridging hydrometallurgy and biochemistry: a protein-based process for recovery and separation of rare earth elements. ACS Cent. Sci. 7, 1798–1808 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrasco-López, C., García-Echauri, S. A., Kichuk, T. & Avalos, J. L. Optogenetics and biosensors set the stage for metabolic cybergenetics. Curr. Opin. Biotechnol. 65, 296–309 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Nasu, Y., Shen, Y., Kramer, L. & Campbell, R. E. Structure- and mechanism-guided design of single fluorescent protein-based biosensors. Nat. Chem. Biol. 17, 509–518 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nadler, D. C., Morgan, S.-A., Flamholz, A., Kortright, K. E. & Savage, D. F. Rapid construction of metabolite biosensors using domain-insertion profiling. Nat. Commun. 7, 12266 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yaginuma, H. et al. Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging. Sci. Rep. 4, 6522 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenwald, E. C., Mehta, S. & Zhang, J. Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. Chem. Rev. 118, 11707–11794 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hackley, C. R., Mazzoni, E. O. & Blau, J. cAMPr: a single-wavelength fluorescent sensor for cyclic AMP. Sci. Signal. 11, eaah3738 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, H. et al. Glucose monitoring in living cells with single fluorescent protein-based sensors. RSC Adv. 8, 2485–2489 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kostyuk, A. I., Demidovich, A. D., Kotova, D. A., Belousov, V. V. & Bilan, D. S. Circularly permuted fluorescent protein-based indicators: history, principles, and classification. Int. J. Mol. Sci. 20, 4200 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baumschlager, A. & Khammash, M. Synthetic biological approaches for optogenetics and tools for transcriptional light-control in bacteria. Adv. Biol. 5, 2000256 (2021).

    Article 

    Google Scholar
     

  • Baumschlager, A., Aoki, S. K. & Khammash, M. Dynamic blue light-inducible T7 RNA polymerases (opto-t7rnaps) for precise spatiotemporal gene expression control. ACS Synth. Biol. 6, 2157–2167 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Romano, E. et al. Engineering AraC to make it responsive to light instead of arabinose. Nat. Chem. Biol. 17, 817–827 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandez-Rodriguez, J., Moser, F., Song, M. & Voigt, C. A. Engineering RGB color vision into Escherichia coli. Nat. Chem. Biol. 13, 706–708 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weber, A. M. et al. A blue light receptor that mediates RNA binding and translational regulation. Nat. Chem. Biol. 15, 1085–1092 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. An extraordinary stringent and sensitive light-switchable gene expression system for bacterial cells. Cell Res. 26, 854–857 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. A single-component light sensor system allows highly tunable and direct activation of gene expression in bacterial cells. Nucleic Acids Res. 48, e33 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pu, J., Zinkus-Boltz, J. & Dickinson, B. C. Evolution of a split RNA polymerase as a versatile biosensor platform. Nat. Chem. Biol. 13, 432–438 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Multamäki, E. et al. Optogenetic control of bacterial expression by red light. ACS Synth. Biol. 11, 3354–3367 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piraner, D. I., Wu, Y. & Shapiro, M. G. Modular thermal control of protein dimerization. ACS Synth. Biol. 8, 2256–2262 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, L. L., Garrett, M. A., Buss, M. T., Kornfield, J. A. & Shapiro, M. G. Tunable temperature-sensitive transcriptional activation based on lambda repressor. ACS Synth. Biol. 11, 2518–2522 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chee, W. K. D., Yeoh, J. W., Dao, V. L. & Poh, C. L. Highly reversible tunable thermal-repressible split-T7 RNA polymerases (Thermal-T7RNAPs) for dynamic gene regulation. ACS Synth. Biol. 11, 921–937 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhokisham, N. et al. A redox-based electrogenetic CRISPR system to connect with and control biological information networks. Nat. Commun. 11, 2427 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tschirhart, T. et al. Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling. Nat. Commun. 8, 14030 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lawrence, J. M. et al. Synthetic biology and bioelectrochemical tools for electrogenetic system engineering. Sci. Adv. 8, eabm5091 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terrell, J. L. et al. Bioelectronic control of a microbial community using surface-assembled electrogenetic cells to route signals. Nat. Nanotechnol. 16, 688–697 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, D. et al. Biomolecular actuators for genetically selective acoustic manipulation of cells. Sci. Adv. 9, eadd9186 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halleran, A. D. & Murray, R. M. Cell-free and in vivo characterization of Lux, Las, and Rpa quorum activation systems in E. coli. ACS Synth. Biol. 7, 752–755 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schuster, L. A. & Reisch, C. R. A plasmid toolbox for controlled gene expression across the Proteobacteria. Nucleic Acids Res. 49, 7189–7202 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J. & Voigt, C. A. Escherichia coli ‘Marionette’ strains with 12 highly optimized small-molecule sensors. Nat. Chem. Biol. 15, 196–204 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klewer, L. & Wu, Y. Light‐induced dimerization approaches to control cellular processes. Chem. Weinh. Bergstr. Ger. 25, 12452–12463 (2019).

    CAS 

    Google Scholar
     

  • Haskett, T. L., Tkacz, A. & Poole, P. S. Engineering rhizobacteria for sustainable agriculture. ISME J. 15, 949–964 (2021). This comprehensive review covers the various challenges and potentials of engineering plant growth promoting traits into rhizobacteria.

    Article 
    PubMed 

    Google Scholar
     

  • Marsh, J. W. & Ley, R. E. Microbiome engineering: taming the untractable. Cell 185, 416–418 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dundas, C. M. & Dinneny, J. R. Genetic circuit design in rhizobacteria. BioDesign Res. 2022, 9858049 (2022).

    Article 

    Google Scholar
     

  • Pirttilä, A. M., Mohammad Parast Tabas, H., Baruah, N. & Koskimäki, J. J. Biofertilizers and biocontrol agents for agriculture: how to identify and develop new potent microbial strains and traits. Microorganisms 9, 817 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pankievicz, V. C. S., Irving, T. B., Maia, L. G. S. & Ané, J.-M. Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops. BMC Biol. 17, 99 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ke, J., Wang, B. & Yoshikuni, Y. Microbiome engineering: synthetic biology of plant-associated microbiomes in sustainable agriculture. Trends Biotechnol. 39, 244–261 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, S.-W. & Yoshikuni, Y. Microbiome engineering for sustainable agriculture: using synthetic biology to enhance nitrogen metabolism in plant-associated microbes. Curr. Opin. Microbiol. 68, 102172 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • M, B. B. & R, D. Manipulating nitrogen regulation in diazotrophic bacteria for agronomic benefit. Biochem. Soc. Trans. 47, 603–614 (2019).

    Article 

    Google Scholar
     

  • Menegat, S., Ledo, A. & Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 12, 14490 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henryson, K., Kätterer, T., Tidåker, P. & Sundberg, C. Soil N2O emissions, N leaching and marine eutrophication in life cycle assessment — a comparison of modelling approaches. Sci. Total Environ. 725, 138332 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ryu, M.-H. et al. Control of nitrogen fixation in bacteria that associate with cereals. Nat. Microbiol. 5, 314–330 (2020). This impressive study illustrates the promises of synthetic biology approaches for implementing nitrogen fixation in alternative bacterial strains.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Espah Borujeni, A., Zhang, J., Doosthosseini, H., Nielsen, A. A. K. & Voigt, C. A. Genetic circuit characterization by inferring RNA polymerase movement and ribosome usage. Nat. Commun. 11, 5001 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haskett, T. L. et al. Engineered plant control of associative nitrogen fixation. Proc. Natl Acad. Sci. USA 119, e2117465119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergkessel, M., Basta, D. W. & Newman, D. K. The physiology of growth arrest: uniting molecular and environmental microbiology. Nat. Rev. Microbiol. 14, 549–562 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergkessel, M. Regulation of protein biosynthetic activity during growth arrest. Curr. Opin. Microbiol. 57, 62–69 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bergkessel, M. & Delavaine, L. Diversity in starvation survival strategies and outcomes among heterotrophic Proteobacteria. Microb. Physiol. 31, 146–162 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen, P. Q., Courchesne, N.-M. D., Duraj-Thatte, A., Praveschotinunt, P. & Joshi, N. S. Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30, 1704847 (2018).

    Article 

    Google Scholar
     

  • Gilbert, C. & Ellis, T. Biological engineered living materials: growing functional materials with genetically programmable properties. ACS Synth. Biol. 8, 1–15 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodrigo-Navarro, A., Sankaran, S., Dalby, M. J., del Campo, A. & Salmeron-Sanchez, M. Engineered living biomaterials. Nat. Rev. Mater. 6, 1175–1190 (2021).

    Article 

    Google Scholar
     

  • Molinari, S., Tesoriero, R. F. & Ajo-Franklin, C. M. Bottom-up approaches to engineered living materials: challenges and future directions. Matter 4, 3095–3120 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tang, T.-C. et al. Materials design by synthetic biology. Nat. Rev. Mater. 6, 332–350 (2021).

    Article 
    CAS 

    Google Scholar
     

  • An, B. et al. Engineered living materials for sustainability. Chem. Rev. 123, 2349–2419 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, B. et al. Programmable living assembly of materials by bacterial adhesion. Nat. Chem. Biol. 18, 289–294 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molinari, S. et al. A de novo matrix for macroscopic living materials from bacteria. Nat. Commun. 13, 5544 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, J. et al. Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nat. Chem. Biol. 15, 34–41 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilbert, C. et al. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat. Mater. 20, 691–700 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McBee, R. M. et al. Engineering living and regenerative fungal–bacterial biocomposite structures. Nat. Mater. 21, 471–478 (2022). This paper presents a promising approach towards functionalized macroscale engineered living materials that embeds engineered microorganisms into blocks made from fungal mycelia.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jo, H. & Sim, S. Programmable living materials constructed with the dynamic covalent interface between synthetic polymers and engineered B. subtilis. ACS Appl. Mater. Interfaces 14, 20729–20738 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer, V. Connecting materials sciences with fungal biology: a sea of possibilities. Fungal Biol. Biotechnol. 9, 5 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delvendahl, N. et al. Narratives of fungal-based materials for a new bioeconomy era. Innov. Eur. J. Soc. Sci. Res. 36, 96–106 (2023).

    Article 

    Google Scholar
     

  • Bagga, M. et al. Advancements in bacteria based self-healing concrete and the promise of modelling. Constr. Build. Mater. 358, 129412 (2022).

    Article 

    Google Scholar
     

  • Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O. & Schlangen, E. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36, 230–235 (2010).

    Article 

    Google Scholar
     

  • Vijay, K., Murmu, M. & Deo, S. V. Bacteria based self healing concrete — a review. Constr. Build. Mater. 152, 1008–1014 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Castro-Alonso, M. J. et al. Microbially induced calcium carbonate precipitation (MICP) and its potential in bioconcrete: microbiological and molecular concepts. Front. Mater. https://doi.org/10.3389/fmats.2019.00126 (2019).

  • Biswas, M. et al. Bioremediase a unique protein from a novel bacterium BKH1, ushering a new hope in concrete technology. Enzym. Microb. Technol. 46, 581–587 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Sarkar, M., Adak, D., Tamang, A., Chattopadhyay, B. & Mandal, S. Genetically-enriched microbe-facilitated self-healing concrete — a sustainable material for a new generation of construction technology. RSC Adv. 5, 105363–105371 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Grand View Research Inc. Self-healing concrete market size, share & trends analysis report by form (intrinsic, capsule based, vascular), by application (residential, industrial, commercial, infrastructure), by region, and segment forecasts, 2020–2027 https://www.grandviewresearch.com/industry-analysis/self-healing-concrete-market (2020).

  • Silva, F. B., da, Boon, N., Belie, N. D. & Verstraete, W. Industrial application of biological self-healing concrete: challenges and economical feasibility. J. Commer. Biotechnol. 21, 31–38 (2015).

    Article 

    Google Scholar
     

  • National Institute of Health. NIH guidelines for research involving recombinant or synthetic nucleic acid molecules (NIH Guidelines) — April 2019. NIH https://osp.od.nih.gov/wp-content/uploads/NIH_Guidelines.pdf (2019).

  • Stirling, F. & Silver, P. A. Controlling the implementation of transgenic microbes: are we ready for what synthetic biology has to offer? Mol. Cell 78, 614–623 (2020). This paper provides a comprehensive review on the challenges associated with biocontainment of engineered organisms, with a particular emphasis on the evolutionary stability of these systems.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. W., Chan, C. T. Y., Slomovic, S. & Collins, J. J. Next-generation biocontainment systems for engineered organisms. Nat. Chem. Biol. 14, 530–537 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diwo, C. & Budisa, N. Alternative biochemistries for alien life: basic concepts and requirements for the design of a robust biocontainment system in genetic isolation. Genes 10, 17 (2019).

    Article 

    Google Scholar
     

  • Mandell, D. J. et al. Biocontainment of genetically modified organisms by synthetic protein design. Nature 518, 55–60 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robertson, W. E. et al. Sense codon reassignment enables viral resistance and encoded polymer synthesis. Science 372, 1057–1062 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyerges, A. et al. A swapped genetic code prevents viral infections and gene transfer. Nature 615, 720–727 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zürcher, J. F. et al. Refactored genetic codes enable bidirectional genetic isolation. Science 378, 516–523 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guindani, C., da Silva, L. C., Cao, S., Ivanov, T. & Landfester, K. Synthetic cells: from simple bio-inspired modules to sophisticated integrated systems. Angew. Chem. Int. Ed. Engl. 61, e202110855 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaut, N. J. & Adamala, K. P. Reconstituting natural cell elements in synthetic cells. Adv. Biol. 5, 2000188 (2021).

    Article 

    Google Scholar
     

  • Tang, T.-C. et al. Hydrogel-based biocontainment of bacteria for continuous sensing and computation. Nat. Chem. Biol. 17, 724–731 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • French, K. E., Zhou, Z. & Terry, N. Horizontal ‘gene drives’ harness indigenous bacteria for bioremediation. Sci. Rep. 10, 15091 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valderrama, J. A., Kulkarni, S. S., Nizet, V. & Bier, E. A bacterial gene-drive system efficiently edits and inactivates a high copy number antibiotic resistance locus. Nat. Commun. 10, 5726 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coban, O., De Deyn, G. B. & van der Ploeg, M. Soil microbiota as game-changers in restoration of degraded lands. Science 375, abe0725 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Downie, H. et al. Transparent soil for imaging the rhizosphere. PLoS ONE 7, e44276 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Downie, H. F., Valentine, T. A., Otten, W., Spiers, A. J. & Dupuy, L. X. Transparent soil microcosms allow 3D spatial quantification of soil microbiological processes in vivo. Plant Signal. Behav. 9, e970421 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, L. et al. Hydrogel-based transparent soils for root phenotyping in vivo. Proc. Natl Acad. Sci. USA 116, 11063–11068 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, K., Palatinszky, M., Nikolov, G., Berry, D. & Shank, E. A. Transparent soil microcosms for live-cell imaging and non-destructive stable isotope probing of soil microorganisms. eLife 9, e56275 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tecon, R., Ebrahimi, A., Kleyer, H., Erev Levi, S. & Or, D. Cell-to-cell bacterial interactions promoted by drier conditions on soil surfaces. Proc. Natl Acad. Sci. USA 115, 9791–9796 (2018). This paper is an elegant study linking experimental soil microcosms with mathematical modelling to reveal the central role of cell density in driving plasmid conjugation rates in soil.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Elsas, J. D., Turner, S. & Bailey, M. J. Horizontal gene transfer in the phytosphere. N. Phytol. 157, 525–537 (2003).

    Article 

    Google Scholar
     

  • Fernandez-Lopez, R. et al. Unsaturated fatty acids are inhibitors of bacterial conjugation. Microbiology 151, 3517–3526 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lima, T., Domingues, S. & Da Silva, G. J. Manure as a potential hotspot for antibiotic resistance dissemination by horizontal gene transfer events. Vet. Sci. 7, 110 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berthold, T. et al. Mycelia as a focal point for horizontal gene transfer among soil bacteria. Sci. Rep. 6, 36390 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenlon, A. et al. Global-level population genomics reveals differential effects of geography and phylogeny on horizontal gene transfer in soil bacteria. Proc. Natl Acad. Sci. USA 116, 15200–15209 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Valle, I., Gao, X., Ghezzehei, T. A., Silberg, J. J. & Masiello, C. A. Artificial soils reveal individual factor controls on microbial processes. mSystems 7, e00301–e00322 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y.-J. & Leadbetter, J. R. Rapid acyl-homoserine lactone quorum signal biodegradation in diverse soils. Appl. Environ. Microbiol. 71, 1291–1299 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piraner, D. I., Abedi, M. H., Moser, B. A., Lee-Gosselin, A. & Shapiro, M. G. Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nat. Chem. Biol. 13, 75–80 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herron, P. M., Gage, D. J. & Cardon, Z. G. Micro-scale water potential gradients visualized in soil around plant root tips using microbiosensors. Plant Cell Env. 33, 199–210 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Stirling, F. et al. Synthetic cassettes for pH-mediated sensing, counting, and containment. Cell Rep. 30, 3139–3148.e4 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Del Valle, I. et al. Translating new synthetic biology advances for biosensing into the earth and environmental sciences. Front. Microbiol. 11, 618373 (2021). This excellent review covers the challenges and potentials of engineering and deploying microbial biosensors into environments.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dieterle, P. B., Min, J., Irimia, D. & Amir, A. Dynamics of diffusive cell signaling relays. eLife 9, e61771 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larkin, J. W. et al. Signal percolation within a bacterial community. Cell Syst. 7, 137–145.e3 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raynaud, X. & Nunan, N. Spatial ecology of bacteria at the microscale in soil. PLoS ONE 9, e87217 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gantner, S. et al. In situ quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol. Ecol. 56, 188–194 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilpiszeski, R. L. et al. Soil aggregate microbial communities: towards understanding microbiome interactions at biologically relevant scales. Appl. Environ. Microbiol. 85, e00324-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Or, D., Smets, B. F., Wraith, J. M., Dechesne, A. & Friedman, S. P. Physical constraints affecting bacterial habitats and activity in unsaturated porous media — a review. Adv. Water Resour. 30, 1505–1527 (2007).

    Article 

    Google Scholar
     

  • Schmieder, S. S. et al. Bidirectional propagation of signals and nutrients in fungal networks via specialized hyphae. Curr. Biol. 29, 217–228.e4 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, H.-Y., Masiello, C. A., Bennett, G. N. & Silberg, J. J. Volatile gas production by methyl halide transferase: an in situ reporter of microbial gene expression in soil. Environ. Sci. Technol. 50, 8750–8759 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fulk, E. M. et al. A split methyl halide transferase AND gate that reports by synthesizing an indicator gas. ACS Synth. Biol. 9, 3104–3113 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fulk, E. M. et al. Nondestructive chemical sensing within bulk soil using 1000 biosensors per gram of matrix. ACS Synth. Biol. 11, 2372–2383 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chemla, Y. et al. Parallel engineering of environmental bacteria and performance over years under jungle-simulated conditions. PLoS ONE 17, e0278471 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koerner, E. Evolution, Function and Manipulation of Methyl Halide Production in Plants. PhD thesis, University of East Anglia (2012).

  • Fisher, J. B. et al. Tree-mycorrhizal associations detected remotely from canopy spectral properties. Glob. Change Biol. 22, 2596–2607 (2016).

    Article 

    Google Scholar
     

  • Barbour, K. M., Barrón‐Sandoval, A., Walters, K. E. & Martiny, J. B. H. Towards quantifying microbial dispersal in the environment. Environ. Microbiol. 25, 137–142 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Choudoir, M. J. & DeAngelis, K. M. A framework for integrating microbial dispersal modes into soil ecosystem ecology. iScience 25, 103887 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Custer, G. F., Bresciani, L. & Dini-Andreote, F. Ecological and evolutionary implications of microbial dispersal. Front. Microbiol. 13, 855859 (2022). Along with Barbour et al. (ref. 187) and Choudoir and DeAngelis (ref. 188), these reviews and perspectives are an excellent introduction to the emerging research area of microbial dispersal in natural environments.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 16242 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Harrison, J. B., Sunday, J. M. & Rogers, S. M. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc. R. Soc. B Biol. Sci. 286, 20191409 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kittredge, H. A., Dougherty, K. M. & Evans, S. E. Dead but not forgotten: how extracellular DNA, moisture, and space modulate the horizontal transfer of extracellular antibiotic resistance genes in soil. Appl. Environ. Microbiol. 88, e02280-21 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, J. et al. Barcoded microbial system for high-resolution object provenance. Science 368, 1135–1140 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brito, I. L. Examining horizontal gene transfer in microbial communities. Nat. Rev. Microbiol. 19, 442–453 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar