Search
Close this search box.

Synthesis of mono Cytochrome P450 in a modified CHO-CPR cell-free protein production platform – Scientific Reports

  • Werck-Reichhart, D. & Feyereisen, R. Cytochromes P450: A success story. Genome Biol. 1(6), REVIEWS3003 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hrycay, E. G. & Bandiera, S. M. Monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 enzymes. Adv. Exp. Med. Biol. 851, 1–61 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esteves, F., Rueff, J. & Kranendonk, M. The central role of cytochrome P450 in xenobiotic metabolism: A brief review on a fascinating enzyme family. J. Xenobiot. 11(3), 94–114 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogu, C. C. & Maxa, J. L. Drug interactions due to cytochrome P450. Proceedings 13(4), 421–3 (2000).

    CAS 

    Google Scholar
     

  • Šrejber, M. et al. Membrane-attached mammalian cytochromes P450: An overview of the membrane’s effects on structure, drug binding, and interactions with redox partners. J. Inorg. Biochem. 183, 117–136 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Finnigan, J. D., Young, C., Cook, D. J., Charnock, S. J. & Black, G. W. Cytochromes P450 (P450s): A review of the class system with a focus on prokaryotic P450s. Adv. Protein Chem. Struct. Biol. 122, 289–320 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi, K., Urashima, K., Shimada, N. & Chiba, K. Substrate specificity for rat cytochrome P450 (CYP) isoforms: Screening with cDNA-expressed systems of the rat. Biochem. Pharmacol. 63(5), 889–896 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patterson, A. D., Gonzalez, F. J. & Idle, J. R. Xenobiotic metabolism – a view through the metabolometer. Chem. Res. Toxicol. 23(5), 851–860 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manikandan, P. & Nagini, S. Cytochrome P450 Structure, Function and Clinical Significance: A Review. Curr. Drug Targets 19(1), 38–54 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McDonnell, A. M. & Dang, C. H. Basic review of the cytochrome p450 system. J. Adv. Pract. Oncol. 4(4), 263–268 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein, K. & Zanger, U. M. Pharmacogenomics of cytochrome P450 3A4: Recent progress toward the “missing heritability” problem. Front. Genet. 4, 12 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zanger, U. M. & Klein, K. Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): Advances on polymorphisms, mechanisms, and clinical relevance. Front. Genet. 4, 24 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zanger, U. M., Turpeinen, M., Klein, K. & Schwab, M. Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal. Bioanal. Chem. 392(6), 1093–1108 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, S., Sharma, R. & Roychowdhury, A. Modulation of cytochrome-P450 inhibition (CYP) in drug discovery: A medicinal chemistry perspective. Curr. Med. Chem. 19, 3605–3621 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walsh, J. S. & Miwa, G. T. Bioactivation of drugs: Risk and Drug design. Annu. Rev. Pharmacol. 51(1), 145–67 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Hausjell, J., Halbwirth, H. & Spadiut, O. Recombinant production of eukaryotic cytochrome P450s in microbial cell factories. Biosci. Rep. 38(2), 20171290 (2018).

    Article 

    Google Scholar
     

  • Riddick, D. S. et al. NADPH-cytochrome P450 oxidoreductase: Roles in physiology, pharmacology, and toxicology. Drug Metab. Dispos. 41(1), 12–23 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, Y. et al. Heterologous expression of human cytochromes P450 2D6 and CYP3A4 in Escherichia coli and their functional characterization. Protein. J. 30(8), 581–591 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamann, T. & Møller, B. L. Improved cloning and expression of cytochrome P450s and cytochrome P450 reductase in yeast. Protein Expr. Purif. 56(1), 121–127 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, S., Yao, D., Burchell, B., Wolf, C. R. & Friedberg, T. High levels of recombinant CYP3A4 expression in Chinese hamster ovary cells are modulated by coexpressed human P450 reductase and hemin supplementation. Arch. Biochem. Biophys. 348(2), 403–410 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, S. et al. Human NADPH-P450 oxidoreductase modulates the level of cytochrome P450 CYP2D6 holoprotein via haem oxygenase-dependent and -independent pathways. Biochem. J. 356(Pt 2), 613–619 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ichinose, H. & Wariishi, H. High-level heterologous expression of fungal cytochrome P450s in Escherichia coli. Biochem. Biophys. Res. Commun. 438(2), 289–294 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paddon, C. J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446), 528–532 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Szczebara, F. M. et al. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat. Biotechnol. 21(2), 143–149 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schulz, C., Herzog, N., Kubick, S., Jung, F. & Küpper, J.-H. Stable Chinese hamster ovary suspension cell lines harboring recombinant human cytochrome P450 oxidoreductase and human cytochrome P450 monooxygenases as platform for in vitro biotransformation studies. Cells 12(17), 2140 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumondai, M. et al. Heterologous expression of high-activity cytochrome P450 in mammalian cells. Sci. Rep. 10(1), 14193 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thoring, L. et al. Cell-free systems based on CHO cell lysates: Optimization strategies, synthesis of “difficult-to-express” proteins and future perspectives. PLoS ONE 11(9), e0163670 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon, Y.-C. et al. Integrating cell-free biosyntheses of heme prosthetic group and apoenzyme for the synthesis of functional P450 monooxygenase. Biotechnol. Bioeng. 110(4), 1193–1200 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dondapati, S. K., Stech, M., Zemella, A. & Kubick, S. Cell-free protein synthesis: A promising option for future drug development. BioDrugs 34, 327–348 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brödel, A. K. et al. IRES-mediated translation of membrane proteins and glycoproteins in eukaryotic cell-free systems. PLoS ONE 8(12), e82234 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brödel, A. K., Sonnabend, A. & Kubick, S. Cell-free protein expression based on extracts from CHO cells. Biotechnol. Bioeng. 111(1), 25–36 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Knauer, J. F. et al. Cell-free production of the bifunctional glycoside hydrolase GH78 from Xylaria polymorpha. Enzyme Microb. Technol. 161, 110110 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stech, M. et al. Production of functional antibody fragments in a vesicle-based eukaryotic cell-free translation system. J. Biotechnol. 164(2), 220–231 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paine, M. J. et al. Cloning and characterization of a novel human dual flavin reductase. J. Biol. Chem. 275(2), 1471–1478 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thoring, L., Dondapati, S. K., Stech, M., Wüstenhagen, D. A. & Kubick, S. High-yield production of “difficult-to-express” proteins in a continuous exchange cell-free system based on CHO cell lysates. Sci. Rep. 7(1), 11710 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, M.-K. & Tullman-Ercek, D. Engineering expression and function of membrane proteins. Methods 147, 66–72 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pandey, A., Shin, K., Patterson, R. E., Liu, X.-Q. & Rainey, J. K. Current strategies for protein production and purification enabling membrane protein structural biology. Biochem. Cell Biol. Biochim. Biol. Cell. 94(6), 507–27 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: New agents, targets and indications. Nat. Rev. Drug Discov. 16(12), 829–842 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sachse, R., Dondapati, S. K., Fenz, S. F., Schmidt, T. & Kubick, S. Membrane protein synthesis in cell-free systems: From bio-mimetic systems to bio-membranes. FEBS Lett. 588(17), 2774–2781 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramm, F. et al. Cell-free systems enable the production of ab5 toxins for diagnostic applications. Toxins 14(4), 233 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khambhati, K. et al. Exploring the potential of cell-free protein synthesis for extending the abilities of biological systems. Front. Bioeng. Biotechnol. 7, 248 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fenz, S. F., Sachse, R., Schmidt, T. & Kubick, S. Cell-free synthesis of membrane proteins: Tailored cell models out of microsomes. Biochim. Biophys. Acta 1838(5), 1382–1388 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neunzig, I. et al. Coexpression of CPR from various origins enhances biotransformation activity of human CYPs in S. pombe. Appl. Biochem. Biotechnol. 170(7), 1751–66 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tydén, E., Tjälve, H. & Larsson, P. Gene and protein expression and cellular localisation of cytochrome P450 enzymes of the 1A, 2A, 2C, 2D and 2E subfamilies in equine intestine and liver. Acta Vet. Scand. 56, 69 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Contreras-Llano, L. E. & Tan, C. High-throughput screening of biomolecules using cell-free gene expression systems. Synth. Biol. 3(1), ysy012 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Y.-H. et al. Measurement of human cytochrome P450 enzyme induction based on mesalazine and mosapride citrate treatments using a luminescent assay. Biomol. Ther. 23(5), 486–492 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bell, L. et al. Evaluation of fluorescence- and mass spectrometry-based CYP inhibition assays for use in drug discovery. J. Biomol. Screen. 13(5), 343–353 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Do, H., Falcone, D., Lin, J., Andrews, D. W. & Johnson, A. E. The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 85(3), 369–378 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rapoport, T. A., Li, L. & Park, E. Structural and mechanistic insights into protein translocation. Annu. Rev. Cell Dev. Biol. 33, 369–390 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huff, H. C., Maroutsos, D. & Das, A. Lipid composition and macromolecular crowding effects on CYP2J2-mediated drug metabolism in nanodiscs. Protein Sci. 28(5), 928–940 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Correia, M. A., Sinclair, P. R. & de Matteis, F. Cytochrome P450 regulation: The interplay between its heme and apoprotein moieties in synthesis, assembly, repair, and disposal. Drug Metab. Rev. 43(1), 1–26 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeney, V. et al. Pro-oxidant and cytotoxic effects of circulating heme. Blood 100(3), 879–887 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ponka, P. Cell biology of heme. Am. J. Med. Sci. 318(4), 241–256 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walter, R. M., Zemella, A., Schramm, M., Kiebist, J. & Kubick, S. Vesicle-based cell-free synthesis of short and long unspecific peroxygenases. Front. Bioeng. Biotechnol. 10, 964396 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stech, M., Hust, M., Schulze, C., Dübel, S. & Kubick, S. Cell-free eukaryotic systems for the production, engineering, and modification of scFv antibody fragments. Eng. Life Sci. 14(4), 387–398 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haueis, L., Stech, M. & Kubick, S. A Cell-free expression pipeline for the generation and functional characterization of nanobodies. Front. Bioeng. Biotechnol. 10, 896763 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadowska, A. et al. Transcriptional profiling of Chinese hamster ovary (CHO) cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Reprod. Toxicol. 104, 143–54 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Usmani, K. A. & Tang, J. Human cytochrome P450: Metabolism of testosterone by CYP3A4 and inhibition by ketoconazole. Curr. Protoc. Toxicol. 20, 4–13 (2004).

    Article 

    Google Scholar
     

  • Dai, D. et al. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J. Pharmacol. Exp. Ther. 299(3), 825–831 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Hariparsad, N. et al. Induction of CYP3A4 by efavirenz in primary human hepatocytes: Comparison with rifampin and phenobarbital. J. Clin. Pharmacol. 44(11), 1273–1281 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, K. et al. CYP3A4/5 activity probed with testosterone and midazolam: Correlation between two substrates at the microsomal and enzyme levels. Mol. Pharm. 16(1), 382–392 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, S.-F. et al. Insights into the structure, function, and regulation of human cytochrome P450 1A2. Curr. Drug Metab. 10(7), 713–729 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sukasem, C. et al. Pharmacogenetic markers of CYP2B6 associated with efavirenz plasma concentrations in HIV-1 infected Thai adults. Br. J. Clin. Pharmacol. 74(6), 1005–1012 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ekins, S. et al. Further characterization of the expression in liver and catalytic activity of CYP2B6. J. Pharmacol. Exp. Ther. 286(3), 1253–1259 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Ariyoshi, N., Miyazaki, M., Toide, K., Sawamura, Y. & Kamataki, T. A single nucleotide polymorphism of CYP2b6 found in Japanese enhances catalytic activity by autoactivation. Biochem. Biophys. Res. Commun. 281(5), 1256–1260 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar