Synergistic inhibition effect of Chlorella sp. and benzotriazole on the corrosion of Q235 carbon steel in alkaline artificial seawater – Scientific Reports

  • Vishwakarma, V. & Anandkumar, B. Molecular biological tools in concrete biodeterioration—a mini review. Environ. Technol. 40, i–xi (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Olivia, M., Moheimani, N., Javaherdashti, R., Nikraz, H. R. & Borowitzka, M. A. The influence of micro algae on corrosion of steel in fly ash geopolymer concrete: a preliminary study. Adv. Mater. Res. 626, 861–866 (2013).

    Article 

    Google Scholar
     

  • Javaherdashti, R., Nikraz, H., Borowitzka, M., Moheimani, N. & Olivia, M. On the impact of algae on accelerating the biodeterioration biocorrosion of reinforced concrete a mechanistic review. Eur. J. Sci. Res. 36, 394–406 (2009).


    Google Scholar
     

  • Bastidas-Arteaga, E., Sánchez-Silva, M., Chateauneuf, A. & Silva, M. R. Coupled reliability model of biodeterioration, chloride ingress and cracking for reinforced concrete structures. Struct. Saf. 30, 110–129 (2008).

    Article 

    Google Scholar
     

  • Thoft-Christensen, P. Deterioration of concrete structures. In Proceedings of the First International Conference on Bridge Maintenance, Safety and Management 1–8 (IABMAS, 2002).

  • Nica, D., Davis, J. L., Kirby, L., Zuo, G. & Roberts, D. J. Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers. Int. Biodeterior. Biodegrad. 46, 61–68 (2000).

    Article 

    Google Scholar
     

  • Javaherdashti, R. Microbiologically Influenced Corrosion—An Engineering Insight (Springer, 2008).


    Google Scholar
     

  • Miller, A., Dionísio, A. & Macedo, M. F. A comparative study of different Portuguese lithotypes. Int. Biodeterior. Biodegrad. 57, 136–142 (2006).

    Article 

    Google Scholar
     

  • Wei, S., Sanchez, M., Trejo, D. & Gillis, C. Microbial mediated deterioration of reinforced concrete structures. Int. Biodeterior. Biodegrad. 64, 748–754 (2010).

    Article 

    Google Scholar
     

  • Schmitt, G. Global Needs for Knowledge Dissemination, Research, and Development in Materials Deterioration and Corrosion Control (World Corrosion Organization, 2009).

  • Brenna, A., Bolzoni, F., Pedeferri, M. & Ormellese, M. Corrosion inhibitors for reinforced concrete structures: a study of binary mixtures. Int. J. Corros. Scale Inhib. 6, 59–69 (2017).


    Google Scholar
     

  • Chen, S. et al. Trigger and response mechanisms for controlled release of corrosion inhibitors from micro/nanocontainers interpreted using endogenous and exogenous stimuli: A review. J. Mater. Sci. Technol. 125, 67–80 (2022).

    Article 

    Google Scholar
     

  • Aramaki, K. Effects of organic inhibitors on corrosion of zinc in an aerated 0.5 M NaCl solution. Corros. Sci. 43, 1985–2000 (2001).

  • Satpati, A. K. & Ravindran, P. V. Electrochemical study of the inhibition of corrosion of stainless steel by 1,2,3-benzotriazole in acidic media. Mater. Chem. Phys. 109, 352–359 (2008).

    Article 

    Google Scholar
     

  • Yao, J. L. et al. Extending surface Raman spectroscopy to transition metals for practical applications IV. A study on corrosion inhibition of benzotriazole on bare Fe electrodes. Electrochim. Acta 48, 1263–1271 (2003).

    Article 

    Google Scholar
     

  • Custódio, J. V., Agostinho, S. M. L. & Simões, A. M. P. Electrochemistry and surface analysis of the effect of benzotriazole on the cut edge corrosion of galvanized steel. Electrochim. Acta55, 5523–5531 (2010).

    Article 

    Google Scholar
     

  • Valdez-Salas, B. et al. Azadirachta indica leaf extract as green corrosion inhibitor for reinforced concrete structures: corrosion effectiveness against commercial corrosion inhibitors and concrete integrity. Materials (Basel) 14, 3226 (2021).

  • Alasvand Zarasvand, K., Rai, V. R. Microorganisms: induction and inhibition of corrosion in metals. Int. Biodeterior. Biodegrad. 87, 66–74 (2014).

  • Herrera, L. K. & Videla, H. A. Role of iron-reducing bacteria in corrosion and protection of carbon steel. Int. Biodeterior. Biodegrad. 63, 891–895 (2009).

    Article 

    Google Scholar
     

  • Liu, H., Sharma, M., Wang, J., Cheng, Y. F. & Liu, H. Microbiologically influenced corrosion of 316L stainless steel in the presence of Chlorella vulgaris. Int. Biodeterior. Biodegrad. 129, 209–216 (2018).

    Article 

    Google Scholar
     

  • Mert, B. D., Mert, M. E., Kardaş, G. & Yazıcı, B. The role of Spirulina platensis on corrosion behavior of carbon steel. Mater. Chem. Phys. 130, 697–701 (2011).

    Article 

    Google Scholar
     

  • Heakal, F.E.-T., Hefny, M. M. & El-Tawab, A. M. A. Electrochemical behavior of 304L stainless steel in high saline and sulphate solutions containing alga Dunaliella salina and β-carotene. J. Alloys Compd. 491, 636–642 (2010).

    Article 

    Google Scholar
     

  • Chen, S. et al. Effect of marine microalgae Synechococcus sp., Chlorella sp., Thalassiosira sp. on corrosion behavior of Q235 carbon steel in f/2 medium. Bioelectrochemistry 150, 108349 (2023).

  • Chen, S. et al. Ecotoxicological effects of sulfonamides and fluoroquinolones and their removal by a green alga (Chlorella vulgaris) and a cyanobacterium (Chrysosporum ovalisporum). Environ. Pollut. 263, 114554 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Mitigation of microbial corrosion by Cu addition to X65 pipeline steel by Pseudomonas aeruginosa MCCC 1A00099. Arch. Microbiol. 204, 299 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, J. et al. Effect of Alcaligenes sp. and sulfate-reducing bacteria on corrosion of Q235 steel in simulated marine environment. Int. J. Electrochem. Sci. 14, 9193–9205 (2019).

  • Akhavan, H., Izadi, M., Mohammadi, I., Shahrabi, T. & Ramezanzadeh, B. The synergistic effect of BTA-Co system on the corrosion inhibition of mild steel in 3.5 wt% NaCl solution. J. Electrochem. Soc. 165, C670–C680 (2018).

  • Kalajahi, S. T., Rasekh, B., Yazdian, F., Neshati, J. & Taghavi, L. Green mitigation of microbial corrosion by copper nanoparticles doped carbon quantum dots nanohybrid. Environ. Sci. Pollut. Res. Int. 27, 40537–40551 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Salgar-Chaparro, S. J., Tarazona, J. & Machuca, L. L. Corrosion of carbon steel by Shewanella chilikensis DC57 under thiosulphate and nitrate reducing conditions. Front. Bioeng. Biotechnol. 10, 825776 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chidiebere, M. A., Oguzie, E. E., Liu, L., Li, Y. & Wang, F. Corrosion inhibition of Q235 mild steel in 0.5 M H2SO4 solution by phytic acid and synergistic iodide additives. Ind. Eng. Chem. Res. 53, 7670–7679 (2014).

  • Milošev, I. Contemporary modes of corrosion protection and functionalization of materials. Acta Chim. Slov. 66, 511–533 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Balakrishnan, A., Jena, G., Pongachira George, R. & Philip, J. Polydimethylsiloxane-graphene oxide nanocomposite coatings with improved anti-corrosion and anti-biofouling properties. Environ. Sci. Pollut. Res. Int. 28, 7404–7422 (2021).

  • Hao, Y., Sani, L. A., Ge, T. & Fang, Q. Phytic acid doped polyaniline containing epoxy coatings for corrosion protection of Q235 carbon steel. Appl. Surf. Sci. 419, 826–837 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Cui, J., Yang, Y., Li, X., Yuan, W. & Pei, Y. Toward a slow-release borate inhibitor to control mild steel corrosion in simulated recirculating water. ACS Appl. Mater. Interfaces 10, 4183–4197 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Jones, D. A. Principles and Presentation of Corrotion 2nd edn. (Prentice-Hall Inc, 1996).


    Google Scholar
     

  • Biesinger, M. C. et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci.257, 2717–2730 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Uhlig, I., Szargan, R., Nesbitt, H. W. & Laajalehto, K. Surface states and reactivity of pyrite and marcasite. Applied Surface Science 179, 222–229 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, Y., Zuo, Y. & Lin, B. The compounded inhibition of sodium molybdate and benzotriazole on pitting corrosion of Q235 steel in NaCl + NaHCO3 solution. Mater. Chem. Phys. 192, 86–93 (2017).

    Article 

    Google Scholar
     

  • Nohira, H. et al. Characterization of ALCVD-Al2O3 and ZrO2 layer using X-ray photoelectron spectroscopy. J. Non-Cryst. Solids 303, 83–87 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, J. & Chen, G. The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a CO2-saturated brine solution. Electrochim. Acta 69, 247–255 (2012).

    Article 

    Google Scholar
     

  • Wang, D. et al. Synergetic effect of two inhibitors for enhanced corrosion protection on the reinforcing steel in the chloride-contaminated carbonated solutions. Constr. Build. Mater. 286, 122916 (2021).

    Article 

    Google Scholar
     

  • Shchukarev, A. V. & Korolkov, D. V. XPS study of group IA carbonates. Cent. Eur. J. Chem. 2, 347–362 (2004).


    Google Scholar
     

  • Dong, Y. et al. Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1. Bioelectrochemistry 123, 34–44 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, S., Wang, Y., Zhang, D. & Wan, Y. Electrochemical behavior of 316L stainless steel in f/2 culture solutions containing Chlorella vulgaris. Int. J. Electrochem. Sci 8, 5330–5342 (2013).

    Article 

    Google Scholar
     

  • Jia, Y., Aagaard, P. & Breedveld, G. D. Sorption of triazoles to soil and iron minerals. Chemosphere 67, 250–258 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rodrigues, P. R. P., Andrade, A. H. P. D. & Agostinho, S. M. L. Benzotriazole as corrosion inhibitor for type 304 stainless steel in water–ethanol media containing 2M H2SO4. Br. Corros. J. 33, 211–213 (1998).

    Article 

    Google Scholar
     

  • Sanad, S. H. Effect of benzotriazole on acid corrosion of steel. Surf. Technol. 22, 29–37 (1984).

    Article 

    Google Scholar
     

  • Mennucci, M. M., Banczek, E. P., Rodrigues, P. R. P. & Costa, I. Evaluation of benzotriazole as corrosion inhibitor for carbon steel in simulated pore solution. Cement Concrete Compos. 31, 418–424 (2009).

    Article 

    Google Scholar
     

  • Kosec, T., Milošev, I. & Pihlar, B. Benzotriazole as an inhibitor of brass corrosion in chloride solution. Appl. Surf. Sci. 253, 8863–8873 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Qian, B., Ren, J., Song, Z. & Zhou, Y. One pot graphene-based nanocontainers as effective anticorrosion agents in epoxy-based coatings. J. Mater. Sci. 53, 14204–14216 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Larabi, L., Harek, Y., Traisnel, M. & Mansri, A. Synergistic influence of poly(4-vinylpyridine) and potassium iodide on inhibition of corrosion of mild steel in 1M HCl. J. Appl. Electrochem. 34, 833–839 (2004).

    Article 

    Google Scholar
     

  • Zhang, B., He, C., Chen, X., Tian, Z. & Li, F. The synergistic effect of polyamidoamine dendrimers and sodium silicate on the corrosion of carbon steel in soft water. Corros. Sci. 90, 585–596 (2015).

    Article 

    Google Scholar
     

  • Liu, S. et al. Corrosion inhibition of carbon steel in tetra-n-butylammonium bromide aqueous solution by benzotriazole and Na3PO4. Corros. Sci. 51, 1356–1363 (2009).

    Article 

    Google Scholar
     

  • Rammelt, U., Koehler, S. & Reinhard, G. Synergistic effect of benzoate and benzotriazole on passivation of mild steel. Corros. Sci. 50, 1659–1663 (2008).

    Article 

    Google Scholar
     

  • Agafonkina, M. O., Kuznetsov, Y. I., Andreeva, N. P., Pronin, Y. E. & Kazanskii, L. P. Formation of protective layers by 5-chlorobenzotriazole and its mixture with sodium fluphenaminate on low-carbon steel from aqueous solutions. Prot. Metals Phys. Chem. Surf. 48, 773–779 (2012).

    Article 

    Google Scholar