Vishwakarma, V. & Anandkumar, B. Molecular biological tools in concrete biodeterioration—a mini review. Environ. Technol. 40, i–xi (2019).
Olivia, M., Moheimani, N., Javaherdashti, R., Nikraz, H. R. & Borowitzka, M. A. The influence of micro algae on corrosion of steel in fly ash geopolymer concrete: a preliminary study. Adv. Mater. Res. 626, 861–866 (2013).
Javaherdashti, R., Nikraz, H., Borowitzka, M., Moheimani, N. & Olivia, M. On the impact of algae on accelerating the biodeterioration biocorrosion of reinforced concrete a mechanistic review. Eur. J. Sci. Res. 36, 394–406 (2009).
Bastidas-Arteaga, E., Sánchez-Silva, M., Chateauneuf, A. & Silva, M. R. Coupled reliability model of biodeterioration, chloride ingress and cracking for reinforced concrete structures. Struct. Saf. 30, 110–129 (2008).
Thoft-Christensen, P. Deterioration of concrete structures. In Proceedings of the First International Conference on Bridge Maintenance, Safety and Management 1–8 (IABMAS, 2002).
Nica, D., Davis, J. L., Kirby, L., Zuo, G. & Roberts, D. J. Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers. Int. Biodeterior. Biodegrad. 46, 61–68 (2000).
Javaherdashti, R. Microbiologically Influenced Corrosion—An Engineering Insight (Springer, 2008).
Miller, A., Dionísio, A. & Macedo, M. F. A comparative study of different Portuguese lithotypes. Int. Biodeterior. Biodegrad. 57, 136–142 (2006).
Wei, S., Sanchez, M., Trejo, D. & Gillis, C. Microbial mediated deterioration of reinforced concrete structures. Int. Biodeterior. Biodegrad. 64, 748–754 (2010).
Schmitt, G. Global Needs for Knowledge Dissemination, Research, and Development in Materials Deterioration and Corrosion Control (World Corrosion Organization, 2009).
Brenna, A., Bolzoni, F., Pedeferri, M. & Ormellese, M. Corrosion inhibitors for reinforced concrete structures: a study of binary mixtures. Int. J. Corros. Scale Inhib. 6, 59–69 (2017).
Chen, S. et al. Trigger and response mechanisms for controlled release of corrosion inhibitors from micro/nanocontainers interpreted using endogenous and exogenous stimuli: A review. J. Mater. Sci. Technol. 125, 67–80 (2022).
Aramaki, K. Effects of organic inhibitors on corrosion of zinc in an aerated 0.5 M NaCl solution. Corros. Sci. 43, 1985–2000 (2001).
Satpati, A. K. & Ravindran, P. V. Electrochemical study of the inhibition of corrosion of stainless steel by 1,2,3-benzotriazole in acidic media. Mater. Chem. Phys. 109, 352–359 (2008).
Yao, J. L. et al. Extending surface Raman spectroscopy to transition metals for practical applications IV. A study on corrosion inhibition of benzotriazole on bare Fe electrodes. Electrochim. Acta 48, 1263–1271 (2003).
Custódio, J. V., Agostinho, S. M. L. & Simões, A. M. P. Electrochemistry and surface analysis of the effect of benzotriazole on the cut edge corrosion of galvanized steel. Electrochim. Acta55, 5523–5531 (2010).
Valdez-Salas, B. et al. Azadirachta indica leaf extract as green corrosion inhibitor for reinforced concrete structures: corrosion effectiveness against commercial corrosion inhibitors and concrete integrity. Materials (Basel) 14, 3226 (2021).
Alasvand Zarasvand, K., Rai, V. R. Microorganisms: induction and inhibition of corrosion in metals. Int. Biodeterior. Biodegrad. 87, 66–74 (2014).
Herrera, L. K. & Videla, H. A. Role of iron-reducing bacteria in corrosion and protection of carbon steel. Int. Biodeterior. Biodegrad. 63, 891–895 (2009).
Liu, H., Sharma, M., Wang, J., Cheng, Y. F. & Liu, H. Microbiologically influenced corrosion of 316L stainless steel in the presence of Chlorella vulgaris. Int. Biodeterior. Biodegrad. 129, 209–216 (2018).
Mert, B. D., Mert, M. E., Kardaş, G. & Yazıcı, B. The role of Spirulina platensis on corrosion behavior of carbon steel. Mater. Chem. Phys. 130, 697–701 (2011).
Heakal, F.E.-T., Hefny, M. M. & El-Tawab, A. M. A. Electrochemical behavior of 304L stainless steel in high saline and sulphate solutions containing alga Dunaliella salina and β-carotene. J. Alloys Compd. 491, 636–642 (2010).
Chen, S. et al. Effect of marine microalgae Synechococcus sp., Chlorella sp., Thalassiosira sp. on corrosion behavior of Q235 carbon steel in f/2 medium. Bioelectrochemistry 150, 108349 (2023).
Chen, S. et al. Ecotoxicological effects of sulfonamides and fluoroquinolones and their removal by a green alga (Chlorella vulgaris) and a cyanobacterium (Chrysosporum ovalisporum). Environ. Pollut. 263, 114554 (2020).
Li, Y. et al. Mitigation of microbial corrosion by Cu addition to X65 pipeline steel by Pseudomonas aeruginosa MCCC 1A00099. Arch. Microbiol. 204, 299 (2022).
Yang, J. et al. Effect of Alcaligenes sp. and sulfate-reducing bacteria on corrosion of Q235 steel in simulated marine environment. Int. J. Electrochem. Sci. 14, 9193–9205 (2019).
Akhavan, H., Izadi, M., Mohammadi, I., Shahrabi, T. & Ramezanzadeh, B. The synergistic effect of BTA-Co system on the corrosion inhibition of mild steel in 3.5 wt% NaCl solution. J. Electrochem. Soc. 165, C670–C680 (2018).
Kalajahi, S. T., Rasekh, B., Yazdian, F., Neshati, J. & Taghavi, L. Green mitigation of microbial corrosion by copper nanoparticles doped carbon quantum dots nanohybrid. Environ. Sci. Pollut. Res. Int. 27, 40537–40551 (2020).
Salgar-Chaparro, S. J., Tarazona, J. & Machuca, L. L. Corrosion of carbon steel by Shewanella chilikensis DC57 under thiosulphate and nitrate reducing conditions. Front. Bioeng. Biotechnol. 10, 825776 (2022).
Chidiebere, M. A., Oguzie, E. E., Liu, L., Li, Y. & Wang, F. Corrosion inhibition of Q235 mild steel in 0.5 M H2SO4 solution by phytic acid and synergistic iodide additives. Ind. Eng. Chem. Res. 53, 7670–7679 (2014).
Milošev, I. Contemporary modes of corrosion protection and functionalization of materials. Acta Chim. Slov. 66, 511–533 (2019).
Balakrishnan, A., Jena, G., Pongachira George, R. & Philip, J. Polydimethylsiloxane-graphene oxide nanocomposite coatings with improved anti-corrosion and anti-biofouling properties. Environ. Sci. Pollut. Res. Int. 28, 7404–7422 (2021).
Hao, Y., Sani, L. A., Ge, T. & Fang, Q. Phytic acid doped polyaniline containing epoxy coatings for corrosion protection of Q235 carbon steel. Appl. Surf. Sci. 419, 826–837 (2017).
Cui, J., Yang, Y., Li, X., Yuan, W. & Pei, Y. Toward a slow-release borate inhibitor to control mild steel corrosion in simulated recirculating water. ACS Appl. Mater. Interfaces 10, 4183–4197 (2018).
Jones, D. A. Principles and Presentation of Corrotion 2nd edn. (Prentice-Hall Inc, 1996).
Biesinger, M. C. et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci.257, 2717–2730 (2011).
Uhlig, I., Szargan, R., Nesbitt, H. W. & Laajalehto, K. Surface states and reactivity of pyrite and marcasite. Applied Surface Science 179, 222–229 (2001).
Zhou, Y., Zuo, Y. & Lin, B. The compounded inhibition of sodium molybdate and benzotriazole on pitting corrosion of Q235 steel in NaCl + NaHCO3 solution. Mater. Chem. Phys. 192, 86–93 (2017).
Nohira, H. et al. Characterization of ALCVD-Al2O3 and ZrO2 layer using X-ray photoelectron spectroscopy. J. Non-Cryst. Solids 303, 83–87 (2002).
Zhao, J. & Chen, G. The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a CO2-saturated brine solution. Electrochim. Acta 69, 247–255 (2012).
Wang, D. et al. Synergetic effect of two inhibitors for enhanced corrosion protection on the reinforcing steel in the chloride-contaminated carbonated solutions. Constr. Build. Mater. 286, 122916 (2021).
Shchukarev, A. V. & Korolkov, D. V. XPS study of group IA carbonates. Cent. Eur. J. Chem. 2, 347–362 (2004).
Dong, Y. et al. Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1. Bioelectrochemistry 123, 34–44 (2018).
Liu, S., Wang, Y., Zhang, D. & Wan, Y. Electrochemical behavior of 316L stainless steel in f/2 culture solutions containing Chlorella vulgaris. Int. J. Electrochem. Sci 8, 5330–5342 (2013).
Jia, Y., Aagaard, P. & Breedveld, G. D. Sorption of triazoles to soil and iron minerals. Chemosphere 67, 250–258 (2007).
Rodrigues, P. R. P., Andrade, A. H. P. D. & Agostinho, S. M. L. Benzotriazole as corrosion inhibitor for type 304 stainless steel in water–ethanol media containing 2M H2SO4. Br. Corros. J. 33, 211–213 (1998).
Sanad, S. H. Effect of benzotriazole on acid corrosion of steel. Surf. Technol. 22, 29–37 (1984).
Mennucci, M. M., Banczek, E. P., Rodrigues, P. R. P. & Costa, I. Evaluation of benzotriazole as corrosion inhibitor for carbon steel in simulated pore solution. Cement Concrete Compos. 31, 418–424 (2009).
Kosec, T., Milošev, I. & Pihlar, B. Benzotriazole as an inhibitor of brass corrosion in chloride solution. Appl. Surf. Sci. 253, 8863–8873 (2007).
Qian, B., Ren, J., Song, Z. & Zhou, Y. One pot graphene-based nanocontainers as effective anticorrosion agents in epoxy-based coatings. J. Mater. Sci. 53, 14204–14216 (2018).
Larabi, L., Harek, Y., Traisnel, M. & Mansri, A. Synergistic influence of poly(4-vinylpyridine) and potassium iodide on inhibition of corrosion of mild steel in 1M HCl. J. Appl. Electrochem. 34, 833–839 (2004).
Zhang, B., He, C., Chen, X., Tian, Z. & Li, F. The synergistic effect of polyamidoamine dendrimers and sodium silicate on the corrosion of carbon steel in soft water. Corros. Sci. 90, 585–596 (2015).
Liu, S. et al. Corrosion inhibition of carbon steel in tetra-n-butylammonium bromide aqueous solution by benzotriazole and Na3PO4. Corros. Sci. 51, 1356–1363 (2009).
Rammelt, U., Koehler, S. & Reinhard, G. Synergistic effect of benzoate and benzotriazole on passivation of mild steel. Corros. Sci. 50, 1659–1663 (2008).
Agafonkina, M. O., Kuznetsov, Y. I., Andreeva, N. P., Pronin, Y. E. & Kazanskii, L. P. Formation of protective layers by 5-chlorobenzotriazole and its mixture with sodium fluphenaminate on low-carbon steel from aqueous solutions. Prot. Metals Phys. Chem. Surf. 48, 773–779 (2012).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-74557-4