Search
Close this search box.

Suspension culture of stem cells established of Calendula officinalis L. – Scientific Reports

  • Ashwlayan, V. D., Kumar, A., Verma, M., Garg, V. K. & Gupta, S. K. Therapeutic potential of Calendula officinalis. Pharm. Pharmacol. Int. J. 6(2), 149–155 (2018).


    Google Scholar
     

  • Jan, N., Andrabi, K. I. & John, R. Calenula officinalis—an important medicinal plant with potential biological properties. Proc. Indian Natl. Sci. Acad. 83(4), 769–787 (2017).


    Google Scholar
     

  • Xuan, S. H. et al. Antioxidant and cellular protective effects against oxidative stress of Calendula officinalis flowers extracts in human skin cells. Appl. Chem. Eng. 27(6), 620–626 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Akhtar, N., Zaman, S. U., Khan, B. A., Amir, M. N. & Ebrahimzadeh, M. A. Calendula extract: Effects on mechanical parameters of human skin. Acta Pol. Pharm. 68(5), 603–701 (2011).


    Google Scholar
     

  • Szopa, A., Klimek-Szczykutowicz, M., Jafernik, K., Koc, K. & Ekiert, H. Pot marigold (Calendula officinalis L.)—a position in classical phytotherapy and newly documented activities. Acta Sci. Pol. Hortorum Cultus 19(3), 47–61 (2020).

    Article 

    Google Scholar
     

  • Andersen, F. A. et al. Final report of the Cosmetic Ingredient Review expert panel amended safety assessment of Calendula officinalis-derived cosmetic ingredients. Int. J. Toxicol. 29(6 Suppl), 221S-S243 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Georgiev, V., Slavov, A., Vasileva, I. & Pavlov, A. Plant cell culture as emerging technology for production of active cosmetic ingredients. Eng. Life Sci. 18(11), 779–798 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Çöçü, S. et al. Adventitious shoot regeneration and micropropagation in Calendula officinalis L.. Biol. Plant. 48(3), 449–451 (2004).

    Article 

    Google Scholar
     

  • Wiktorowska, E., Dlugosz, M. & Janiszowska, W. Significant enhancement of oleanolic acid accumulation by biotic elicitors in cell suspension cultures of Calendula officinalis L.. Enzyme Microb. Technol. 46(1), 14–20 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Długosz, M., Wiktorowska, E., Wiśniewska, A. & Pączkowski, C. Production of oleanolic acid glycosides by hairy root established cultures of Calendula officinalis L.. Acta Biochim. Pol. 60(3), 467–473 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Çetin, B., Kalyoncu, F. & Kurtuluş, B. Antibacterial activities of Calendula officinalis callus extract. Int. J. Sec. Metab. 4(3), 257–263 (2017).

    Article 

    Google Scholar
     

  • Grzelak, A. & Janiszowska, W. Initiation and growth characteristics of suspension cultures of Calendula officinalis cells. Plant Cell Tissue Organ. Cult. 71, 29–40 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Auguścińska, E. & Kasprzyk, Z. Studies on the labelling of terpenoids in shoots and cells or protoplasts from Calendula officinalis leaves. Acta Biochim. Pol. 29(1–2), 7–13 (1982).

    PubMed 

    Google Scholar
     

  • Długosz, M., Markowski, M. & Pączkowski, C. Source of nitrogen as a factor limiting saponin production by hairy root and suspension cultures of Calendula officinalis L.. Acta Physiol. Plant. 40, 35 (2018).

    Article 

    Google Scholar
     

  • Alsoufi, A. S. M., Pączkowski, C., Szakiel, A. & Długosz, M. Effect of jasmonic acid and chitosan on triterpenoid production in Calendula officinalis hairy root cultures. Phytochem. Lett. 31, 5–11 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rogowska, A., Paczkowski, C. & Szakiel, A. Modulation of steroid and triterpenoid metabolism in Calendula officinalis plants and hairy root cultures exposed to cadmium stress. Int. J. Mol. Sci. 23(10), 5640 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehrabi, A. A., Khodadadi, E., Sadeghi, Z. & Shooshtari, L. An investigation of tissue culture and co-cultures of different explants in Calendula officinalis. Int. J. Biosci. 3(12), 201–205 (2013).

    Article 

    Google Scholar
     

  • Kaya, N. & Aki, C. In vitro effects of plant growth regulators on callus formation in Calendula officinalis L. and Calendula arvensis L. species. Ann. Biol. Res. 8(1), 1–7 (2017).

    CAS 

    Google Scholar
     

  • Al-Abasi, I. N., Bashi, B. Z. K. & Al-Mallah, M. K. Design of culture medium and leaf clones are determinant factors in callus induction of Calendula officinalis L.. Eur. Acad. Res. 6(5), 1901–1913 (2018).


    Google Scholar
     

  • Efferth, T. Biotechnology applications of plant callus cultures. Engineering 5(1), 50–59 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kolewe, M. E., Gaurav, V. & Roberts, S. C. Pharmaceutically active natural product synthesis and supply via plant cell culture technology. Mol. Pharm. 5(2), 243–256 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, E. K. et al. Cultured cambial meristematic cells as a source of plant natural products. Nat. Biotechnol. 28(11), 1213–1217 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ochoa-Villarreal, M. et al. Cambial meristematic cells: A platform for the production of plant natural products. New Biotechnol. 32(6), 581–587 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ye, Z. H. Vascular tissue differentiation and pattern formation in plants. Annu. Rev. Plant Biol. 53, 183–202 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laux, T. The stem cell concept in plants: A matter of debate. Cell 113(2), 281–283 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yun, B. W. et al. Plant natural products: History, limitations and the potential of cambial meristematic cells. Biotechnol. Genet. Eng. Rev. 28(1), 47–60 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joshi, J. B., Elias, C. B. & Patole, M. S. Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells. Chem. Eng. J. 62(2), 121–141 (1996).

    CAS 

    Google Scholar
     

  • Lee, S. B. et al. Wild ginseng cambial meristematic cells ameliorate hepatic steatosis and mitochondrial dysfunction in high-fat diet-fed mice. J. Pharm. Pharmacol. 68(1), 119–127 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moon, S. H., Venkatesh, J., Yu, J. W. & Park, S. W. Differential induction of meristematic stem cells of Catharanthus roseus and their characterization. C R Biol. 338(11), 745–756 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Song, Y. et al. A novel strategy to enhance terpenoids production using cambial meristematic cells of Tripterygium wilfordii Hook f.. Plant Methods 15, 129 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y., Jiang, J., Qin, N., Zhang, Q. & Yan, C. Biotransformation of 4-methylcoumarins by cambial meristematic cells of Camptotheca acuminate. RSC Adv. 9(17), 9449 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehring, A. et al. Establishment and triterpenoid production of Ocimum basilicum cambial meristematic cells. Plant Cell Tissue Organ Cult. 143, 573–581 (2020).

    Article 
    CAS 

    Google Scholar
     

  • He, L. et al. Establishment of the technology of cambial meristematic cells (CMCs) culture from shoots and high expression of FmPHV (PHAVOLUTA) functions in identification and differentiation of CMCs and promoting the shoot regeneration by hypocotyl in Fraxinus mandshurica. Plant Physiol. Biochem. 160, 352–364 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Partap, M., Warghat, A. R. & Kumar, S. Cambial meristematic cell culture: A sustainable technology towards in vitro specialized metabolites production. Crit. Rev. Biotechnol. 43(5), 734–752 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Legha, M. R. et al. Induction of carotenoid pigments in callus cultures of Calendula officinalis L. in response to nitrogen and sucrose levels. In Vitro Cell Dev. Biol. Plant 48, 99–106 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Leal, F., et al. In vitro multiplication of Calendula arvensis for secondary metabolites extraction. In Proceedings of the IIIrd International Symposium on Acclimatization and Establishment of Micropropagated Plants, Faro, Portugal, 28 February 2009.

  • Ibrahim, M. M., Abed, R. M. & Ali, F. Q. Influence of biotic elicitor Aspergillus niger on salicylic acid products in callus cultures of Calendula officinalis L. plant. J. Phys. Conf. Ser. 1294, 062016 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sugimoto, K., Gordon, S. P. & Meyerowitz, E. M. Regeneration in plants and animals: Dedifferentiation, transdifferentiation, or just differentiation?. Trends Cell Biol. 21(4), 212–218 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grafi, G. How cells dedifferentiate: A lesson from plants. Dev. Biol. 268(1), 1–6 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verdeil, J.-L., Alemanno, L., Niemenak, N. & Tranbarger, T. J. Pluripotent versus totipotent plant stem cells: Dependance versus autonomy?. Trends Plant Sci. 12(6), 245–252 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sugimoto, K., Jiao, Y. & Meyerowitz, E. M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev. Cell 18(3), 463–471 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parizot, B. et al. Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation. Plant Physiol. 146(1), 140–148 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ichihashi, Y. & Tsukaya, H. Behavior of leaf meristems and their modification. Front. Plant Sci. 6, 1060 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donnelly, P. M., Bonetta, D., Tsukaya, H., Dengler, R. E. & Dengler, N. G. Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev. Biol. 215(2), 407–419 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maksymowych, R. & Erickson, R. O. Development of the lamina in Xanthium italicum represented by the plastochron index. Am. J. Bot. 47(6), 451–459 (1960).

    Article 

    Google Scholar
     

  • Alvarez, J. P., Furumizu, C., Efroni, E. Y. & Bowman, J. L. Active suppression of a leaf meristem orchestrates determinate leaf growth. eLife 5, e15023 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, F., Guan, C. & Jiao, Y. Molecular mechanisms of leaf morphogenesis. Mol. Plant 11(9), 1117–1134 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin, J., Bae, S. & Seo, P. J. De novo shoot organogenesis during plant regeneration. J. Exp. Bot. 71(1), 63–72 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Atta, R. et al. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J. 57(4), 626–44 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, B. et al. Divergent regeneration-competent cells adopt a common mechanism for callus initiation in angiosperms. Regeneration 4(3), 132–139 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Müller-Xing, R. & Xing, Q. The plant stem-cell niche and pluripotency: 15 years of an epigenetic perspective. Front. Plant Sci. 13, 1018559 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ikeuchi, M. et al. Molecular mechanisms of plant regeneration. Annu. Rev. Plant Biol. 70, 3.1-3.30 (2019).

    Article 

    Google Scholar
     

  • Maher, M. F. et al. Plant gene editing through de novo induction of meristems. Nat. Biotechnol. 38(1), 84–89 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15(3), 473–497 (1962).

    Article 
    CAS 

    Google Scholar