Supplementation of sperm cryopreservation media with H2S donors enhances sperm quality, reduces oxidative stress, and improves in vitro fertilization outcomes – Scientific Reports

  • Zhu, Z. et al. Resveratrol improves Boar sperm quality via 5AMP-activated protein kinase activation during cryopreservation. Oxid. Med. Cell. Longev. 2019, 5921503 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, I. M. et al. Impact of cryopreservation on spermatozoa freeze-thawed traits and relevance omics to assess sperm cryo-tolerance in farm animals. Front. Vet. Sci. 8, 609180 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamburrino, L. et al. Cryopreservation of human spermatozoa: Functional, molecular and clinical aspects. Int. J. Mol. Sci. 24, 4656 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharafi, M., Borghei-Rad, S. M., Hezavehei, M., Shahverdi, A. & Benson, J. D. Cryopreservation of semen in domestic animals: A review of current challenges, applications, and prospective strategies. Animals 12, 3271 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hungerford, A., Bakos, H. W. & Aitken, R. J. Sperm cryopreservation: Current status and future developments. Reprod. Fertil. Dev. 35, 265–281 (2022).

    Article 

    Google Scholar
     

  • John Aitken, R., Clarkson, J. S. & Fishel, S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol. Reprod. 41, 183–197 (1989).

    Article 

    Google Scholar
     

  • Agarwal, A., Saleh, R. A. & Bedaiwy, M. A. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil. Steril. 79, 829–843 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Aitken, R. J., Gibb, Z., Baker, M. A., Drevet, J. & Gharagozloo, P. Causes and consequences of oxidative stress in spermatozoa. Reprod. Fertil. Dev. 28, 1–10 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siracusa, R. et al. NO, CO and H2S: A trinacrium of bioactive gases in the brain. Biochem. Pharmacol. 202, 115122 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Majid, A. S. A., Majid, A. M. S. A., Yin, Z. Q. & Ji, D. Slow regulated release of H2S inhibits oxidative stress induced cell death by influencing certain key signaling molecules. Neurochem. Res. 38, 1375–1393 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Tyagi, N. et al. H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxid. Redox Signal. 11, 25–33 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kesherwani, V., Nelson, K. & Agrawal, S. Effect of sodium hydrosulphide after acute compression injury of spinal cord. Brain Res. 1527, 222–229 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, C. et al. Cardioprotective effects of a novel hydrogen sulfide agent–controlled release formulation of s-propargyl-cysteine on heart failure rats and molecular mechanisms. PLoS One 8, e69205 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sojitra, B. et al. Nitric oxide synthase inhibition abrogates hydrogen sulfide-induced cardioprotection in mice. Mol. Cell. Biochem. 360, 61–69 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C., Wang, H.-Y., Liu, Z.-W., Fu, Y. & Zhao, B. Effect of endogenous hydrogen sulfide on oxidative stress in oleic acid-induced acute lung injury in rats. Chin. Med. J. 124, 3476–3480 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Otunctemur, A. et al. Protective effect of hydrogen sulfide on gentamicin-induced renal injury. Renal Fail. 36, 925–931 (2014).

    Article 

    Google Scholar
     

  • Sen, U. et al. Hydrogen sulfide ameliorates hyperhomocysteinemia-associated chronic renal failure. Am. J. Physiol. Renal Physiol. 297, F410–F419 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jha, S., Calvert, J. W., Duranski, M. R., Ramachandran, A. & Lefer, D. J. Hydrogen sulfide attenuates hepatic ischemia-reperfusion injury: Role of antioxidant and antiapoptotic signaling. Am. J. Physiol. Heart Circ. Physiol. 295, H801–H806 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, C., Liang, F., Masood, W. S. & Yan, X. Hydrogen sulfide protected gastric epithelial cell from ischemia/reperfusion injury by Keap1 s-sulfhydration, MAPK dependent anti-apoptosis and NF-κB dependent anti-inflammation pathway. Eur. J. Pharmacol. 725, 70–78 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui, J. et al. Protective effect of endogenous hydrogen sulfide against oxidative stress in gastric ischemia-reperfusion injury. Exp. Ther. Med. 5, 689–694 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Řimnáčová, H. et al. Evidence of endogenously produced hydrogen sulfide (H2S) and persulfidation in male reproduction. Sci. Rep. 12, 11426 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pintus, E. et al. N-thiocarboxyanhydrides, amino acid-derived enzyme-activated H2S donors, enhance sperm mitochondrial activity in presence and absence of oxidative stress. BMC Vet. Res. 19, 52 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Hydrogen sulfide as a potential target in preventing spermatogenic failure and testicular dysfunction. Antioxid. Redox Signal. 28, 1447–1462 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zuhra, K., Augsburger, F., Majtan, T. & Szabo, C. Cystathionine-β-synthase: Molecular regulation and pharmacological inhibition. Biomolecules 10, 697 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao, Y.-G., Chen, X., Zhang, Y. & Chen, G. Hydrogen sulfide therapy: A narrative overview of current research and possible therapeutic implications in future. Med. Gas Res. 10, 185 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sugiura, Y. et al. Cadmium exposure alters metabolomics of sulfur-containing amino acids in rat testes. Antioxid. Redox Signal. 7, 781–787 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, G., Xie, Z.-Z., Chua, J. M., Wong, P. & Bian, J. Hydrogen sulfide protects testicular germ cells against heat-induced injury. Nitric Oxide 46, 165–171 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, D.-D. et al. Cellular mechanism underlying hydrogen sulfide mediated epithelial K+ secretion in rat epididymis. Front. Physiol. 9, 1886 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kadlec, M., Ros-Santaella, J. L. & Pintus, E. The roles of no and h2s in sperm biology: Recent advances and new perspectives. Int. J. Mol. Sci. 21, 2174 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, H. et al. Characterization of hydrogen sulfide and its synthases, cystathionine β-synthase and cystathionine γ-lyase, in human prostatic tissue and cells. Urology 79(483), e481-483.e485 (2012).


    Google Scholar
     

  • Rahardjo, H. E., Ückert, S., Kuczyk, M. A. & Hedlund, P. Expression and distribution of the transient receptor potential cationic channel ankyrin 1 (TRPA1) in the human seminal vesicles. Health Sci. Rep. 6, e987 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Yetik-Anacak, G. et al. Hydrogen sulfide compensates nitric oxide deficiency in murine corpus cavernosum. Pharmacol. Res. 113, 38–43 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • d’Emmanuele di Villa Bianca, R. et al. Hydrogen sulfide as a mediator of human corpus cavernosum smooth-muscle relaxation. Proc. Natl. Acad. Sci. 106, 4513–4518 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srilatha, B., Adaikan, P. G. & Moore, P. K. Possible role for the novel gasotransmitter hydrogen sulphide in erectile dysfunction—A pilot study. Eur. J. Pharmacol. 535, 280–282 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Srilatha, B., Adaikan, P. G., Li, L. & Moore, P. K. Hydrogen sulphide: A novel endogenous gasotransmitter facilitates erectile function. J. Sex. Med. 4, 1304–1311 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shukla, N. et al. Effect of hydrogen sulphide-donating sildenafil (ACS6) on erectile function and oxidative stress in rabbit isolated corpus cavernosum and in hypertensive rats. BJU Int. 103, 1522–1529 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Endogenous hydrogen sulfide as a mediator of vas deferens smooth muscle relaxation. Fertil. Steril. 95, 1833–1835 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. H2S relaxes vas deferens smooth muscle by modulating the large conductance Ca2+-activated K+ (BKCa) channels via a redox mechanism. J. Sex. Med. 9, 2806–2813 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Qi, Q. et al. A novel posttranslational modification of histone, H3 S-sulfhydration, is down-regulated in asthenozoospermic sperm. J. Assist. Reprod. Genet. 38, 3175–3193 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Z.-Z., Liu, Y. & Bian, J.-S. Hydrogen sulfide and cellular redox homeostasis. Oxid. Med. Cell. Longev. 2016, 6043038 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Magableh, M. R., Kemp-Harper, B. K., Ng, H. H., Miller, A. A. & Hart, J. L. Hydrogen sulfide protects endothelial nitric oxide function under conditions of acute oxidative stress in vitro. Naunyn-Schmiedeberg’s Arch. Pharmacol. 387, 67–74 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Predmore, B. L., Lefer, D. J. & Gojon, G. Hydrogen sulfide in biochemistry and medicine. Antioxid. Redox Signal. 17, 119–140 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimura, Y., Goto, Y.-I. & Kimura, H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid. Redox Signal. 12, 1–13 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao, Z. et al. Pharmacological levels of hydrogen sulfide inhibit oxidative cell injury through regulating the redox state of thioredoxin. Free Radic. Biol. Med. 134, 190–199 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X. et al. Hydrogen sulfide reduces kidney injury due to urinary-derived sepsis by inhibiting NF-κB expression, decreasing TNF-α levels and increasing IL-10 levels. Exp. Ther. Med. 8, 464–470 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y., Biggs, T. D. & Xian, M. Hydrogen sulfide (H2S) releasing agents: Chemistry and biological applications. Chem. Commun. 50, 11788–11805 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Donald, J. A. Handbook of Hormones 1091–1094 (Elsevier, 2021).

    Book 

    Google Scholar
     

  • Lazado, C. C., Voldvik, V., Timmerhaus, G. & Andersen, Ø. Fast and slow releasing sulphide donors engender distinct transcriptomic alterations in Atlantic salmon hepatocytes. Aquat. Toxicol. 260, 106574 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Panthi, S., Chung, H.-J., Jung, J. & Jeong, N. Y. Physiological importance of hydrogen sulfide: Emerging potent neuroprotector and neuromodulator. Oxid. Med. Cell. Longev. 2016, 9049782 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaichko, N., Melnik, A., Yoltukhivskyy, M., Olhovskiy, A. & Palamarchuk, I. Hydrogen sulfide: Metabolism, biological and medical role. Ukr. Biochem. J. 86, 5–25 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, K.-P., Yang, X.-S. & Wu, T. The effect of antioxidants on sperm quality parameters and pregnancy rates for idiopathic male infertility: A network meta-analysis of randomized controlled trials. Front. Endocrinol. 13, 810242 (2022).

    Article 

    Google Scholar
     

  • Cilio, S. et al. Beneficial effects of antioxidants in male infertility management: A narrative review. Oxygen 2, 1–11 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Majumder, A. Targeting homocysteine and hydrogen sulfide balance as future therapeutics in cancer treatment. Antioxidants 12, 1520 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimura, Y. & Kimura, H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J. 18, 1165–1167 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whiteman, M. et al. The novel neuromodulator hydrogen sulfide: An endogenous peroxynitrite ‘scavenger’?. J. Neurochem. 90, 765–768 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, M., Hu, L.-F., Hu, G. & Bian, J.-S. Hydrogen sulfide protects astrocytes against H2O2-induced neural injury via enhancing glutamate uptake. Free Radic. Biol. Med. 45, 1705–1713 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dutta, S. et al. Antioxidant paradox in male infertility: ‘A blind eye’ on inflammation. Antioxidants 11, 167 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadeghi, N., Boissonneault, G., Tavalaee, M. & Nasr-Esfahani, M. H. Oxidative versus reductive stress: A delicate balance for sperm integrity. Syst. Biol. Reprod> Med. 69, 20–31 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. Hydrogen sulfide and/or ammonia reduces spermatozoa motility through AMPK/AKT related pathways. Sci. Rep. 6, 37884 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szabo, C. et al. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br. J. Pharmacol. 171, 2099–2122 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panagaki, T., Randi, E. B., Augsburger, F. & Szabo, C. Overproduction of H2S, generated by CBS, inhibits mitochondrial Complex IV and suppresses oxidative phosphorylation in Down syndrome. Proc. Natl. Acad. Sci. 116, 18769–18771 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ning, J. Z. et al. The protective effects of GYY4137 on ipsilateral testicular injury in experimentally varicocele-induced rats. Exp. Ther. Med. 15, 433–439 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Gualtieri, R. et al. Sperm oxidative stress during in vitro manipulation and its effects on sperm function and embryo development. Antioxidants 10, 1025 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ismail, A. A., Abdel-Khalek, A., Khalil, W. & El-Harairy, M. Influence of adding green synthesized gold nanoparticles to tris-extender on sperm characteristics of cryopreserved goat semen. J. Anim. Poult. Prod. 11, 39–45 (2020).


    Google Scholar
     

  • Gacem, S., Catalán, J., Yánez-Ortiz, I., Soler, C. & Miró, J. New sperm morphology analysis in equids: Trumorph® vs eosin-nigrosin stain. Vet. Sci. 8, 79 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bassiri, F., Tavalaee, M., Shiravi, A., Mansouri, S. & Nasr-Esfahani, M. Is there an association between HOST grades and sperm quality?. Hum. Reprod. 27, 2277–2284 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanhaei Vash, N., Nadri, P. & Karimi, A. Synergistic effects of myo-inositol and melatonin on cryopreservation of goat spermatozoa. Reprod. Domest. Anim. 57, 876–885 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kiani-Esfahani, A., Tavalaee, M., Deemeh, M. R., Hamiditabar, M. & Nasr-Esfahani, M. H. DHR123: An alternative probe for assessment of ROS in human spermatozoa. Syst. Biol. Reprod. Med. 58, 168–174 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guthrie, H. & Welch, G. Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry. J. Anim. Sci. 84, 2089–2100 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aitken, R. J., Wingate, J. K., De Iuliis, G. N. & McLaughlin, E. A. Analysis of lipid peroxidation in human spermatozoa using BODIPY C11. MHR Basic Sci. Reprod. Med. 13, 203–211 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Nur, Z., Zik, B., Ustuner, B., Sagirkaya, H. & Ozguden, C. Effects of different cryoprotective agents on ram sperm morphology and DNAintegrity. Theriogenology 73, 1267–1275 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agdam, H. R., Razi, M., Amniattalab, A., Malekinejad, H. & Molavi, M. Co-administration of vitamin E and testosterone attenuates the atrazine-induced toxic effects on sperm quality and testes in rats. Cell J. (Yakhteh) 19, 292 (2017).


    Google Scholar
     

  • Sadeghi, M. et al. Developmental competence of IVF and SCNT goat embryos is improved by inhibition of canonical WNT signaling. PLoS One 18, e0281331 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Habibi, R. et al. Functional characterization of NANOG in goat pre-implantation embryonic development. Theriogenology 120, 33–39 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar