Search
Close this search box.

Successful xenotransplantation of testicular cells following fractionated chemotherapy of recipient birds – Scientific Reports

  • Trefil, P. et al. Preparation of fowl testes as recipient organs to germ-line chimeras by means of gamma-radiation. Br. Poult. Sci. 44, 643–650 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blesbois, E. et al. Predictors of success of semen cryopreservation in chickens. Theriogenology 69, 252–261 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thelie, A. et al. Chicken semen cryopreservation and use for the restoration of rare genetic resources. Poult. Sci. 98, 447–455 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parks, J. E. & Lynch, D. V. Lipid composition and thermotropic phase behavior of boar, bull, stallion, and rooster sperm membranes. Cryobiology 29, 255–266 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Partyka, A., Łukaszewicz, E., Niżański, W. & Twardoń, J. Detection of lipid peroxidation in frozen-thawed avian spermatozoa using C11-BODIPY581/591. Theriogenology 75, 1623–1629 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caparroz, R., Miyaki, C. Y., Bampi, M. I. & Wajntal, A. Analysis of the genetic variability in a sample of the remaining group of Spix’s Macaw (Cyanopsitta spixii, Psittaciformes: Aves) by DNA fingerprinting. Biol. Conserv. 99, 307–311 (2001).

    Article 

    Google Scholar
     

  • Park, K. J., Jung, K. M., Kim, Y. M., Lee, K. H. & Han, J. Y. Production of germline chimeric quails by transplantation of cryopreserved testicular cells into developing embryos. Theriogenology 156, 189–195 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, T. et al. A low-tech, cost-effective and efficient method for safeguarding genetic diversity by direct cryopreservation of poultry embryonic reproductive cells. Elife https://doi.org/10.7554/eLife.74036 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macdonald, J., Glover, J. D., Taylor, L., Sang, H. M. & McGrew, M. J. Characterisation and germline transmission of cultured Avian primordial germ cells. PLoS One 5, e15518 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pramod, R. K. et al. Isolation, characterization, and in vitro culturing of spermatogonial stem cells in japanese quail (Coturnix japonica). Stem Cells Dev. 26, 60–70 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • González, R. & Dobrinski, I. Beyond the mouse monopoly: Studying the male germ line in domestic animal models. ILAR J. 56, 83–98 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodcock, M. E. et al. Reviving rare chicken breeds using genetically engineered sterility in surrogate host birds. Proc. Natl. Acad. Sci. 116, 20930–20937 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ballantyne, M. et al. Direct allele introgression into pure chicken breeds using Sire Dam Surrogate (SDS) mating. Nat. Commun. 12, 659 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aige-Gil, V. & Simkiss, K. Sterilisation of avian embryos with busulphan. Res. Vet. Sci. 50, 139–144 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, Y., D’Costa, S., Pardue, S. L. & Petitte, J. N. Production of germline chimeric chickens following the administration of a busulfan emulsion. Mol. Reprod. Dev. 70, 438–444 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, Y. et al. Increased proportion of donor primordial germ cells in chimeric gonads by sterilisation of recipient embryos using busulfan sustained-release emulsion in chickens. Reprod. Fertil. Dev. 20, 900 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, Y. et al. Germline replacement by transfer of primordial germ cells into partially sterilized embryos in the chicken1. Biol. Reprod. 83, 130–137 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trefil, P. et al. Restoration of spermatogenesis and male fertility by transplantation of dispersed testicular cells in the chicken. Biol. Reprod. 75, 575–581 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pereira, R. J. G. et al. Conservation of Avian germplasm by xenogeneic transplantation of spermatogonia from sexually mature donors. Stem Cells Dev. 22, 735–749 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, H. C. et al. Compensatory proliferation of endogenous chicken primordial germ cells after elimination by busulfan treatment. Stem Cell Res. Ther. https://doi.org/10.1186/scrt347 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yun Bo, C., Yi Xiang, Z., Guang, I. C., Li, L. & Ke Jun, C. Effects of busulfan on development of testis in mature rooster. China Poult. 31, 26–29 (2009).


    Google Scholar
     

  • Yu, F. et al. Transgenic sperm produced by electrotransfection and allogeneic transplantation of chicken fetal spermatogonial stem cells. Mol. Reprod. Dev. 77, 340–347 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tagirov, M. & Golovan, S. The effect of busulfan treatment on endogenous spermatogonial stem cells in immature roosters. Poult. Sci. 91, 1680–1685 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shinohara, T., Orwig, K. E., Avarbock, M. R. & Brinster, R. L. Remodeling of the postnatal mouse testis is accompanied by dramatic changes in stem cell number and niche accessibility. Proc. Natl. Acad. Sci. U.S.A. 98, 6186–6191 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shinohara, T., Orwig, K. E., Avarbock, M. R. & Brinster, R. L. Germ line stem cell competition in postnatal mouse testes1. Biol. Reprod. 66, 1491–1497 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oatley, J. M. & Brinster, R. L. The germline stem cell Niche unit in mammalian testes. Physiol. Rev. 92, 577–595 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dobrinski, I. & Travis, A. J. Germ cell transplantation for the propagation of companion animals, non-domestic and endangered species. Reprod. Fertil. Dev. 19, 732–739 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russell, J. & Kangarloo, S. Therapeutic drug monitoring of Busulfan in transplantation. Curr. Pharm. Des. 14, 1936–1949 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Honaramooz, A. et al. Depletion of endogenous germ cells in male pigs and goats in preparation for germ cell transplantation. J. Androl. 26, 698–705 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, F. et al. Transgenic sperm produced by electrotransfection and allogeneic transplantation of chicken fetal spermatogonial stem cells. Mol. Reprod. Dev. 77, 340–347 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bucci, L. R. & Meistrich, M. L. Effects of busulfan on murine spermatogenesis: Cytotoxicity, sterility, sperm abnormalities, and dominant lethal mutations. Mutat. Res. Mol. Mech. Mutagen. 176, 259–268 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Ding, H. et al. Whole blood gas and biochemical reference intervals for Lohmann Silver layers. Poult. Sci. 100, 101368 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J.-H., Jung-Ha, H.-S., Lee, H.-T. & Chung, K.-S. Development of a positive method for male stem cell-mediated gene transfer in mouse and pig. Mol. Reprod. Dev. 46, 515–526 (1997).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/(SICI)1098-2795(199704)46:43.0.CO;2-V” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291098-2795%28199704%2946%3A4%3C515%3A%3AAID-MRD10%3E3.0.CO%3B2-V” aria-label=”Article reference 33″ data-doi=”10.1002/(SICI)1098-2795(199704)46:43.0.CO;2-V”>Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Viguier-Martinez, M.-C., Hochereau-de Reviers, M.-T., Barenton, B. & Perreau, C. Effect of prenatal treatment with busulfan on the hypothalamo-pituitary axis, genital tract and testicular histology of prepubertal male rats. Reproduction 70, 67–73 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Boujrad, N., Hochereau-de Reviers, M. T. & Carreau, S. Evidence for germ cell control of Sertoli cell function in three models of germ cell depletion in adult rat. Biol. Reprod. 53, 1345–1352 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boujrad, N., Reviers, M. T. H., Kamtchouing, P., Perreau, C. & Carreau, S. Evolution of somatic and germ cell populations after busulfan treatment in utero or neonatal cryptorchidism in the rat. Andrologia 27, 223–228 (2009).

    Article 

    Google Scholar
     

  • Smith, L. B., O’Shaughnessy, P. J. & Rebourcet, D. Cell-specific ablation in the testis: What have we learned?. Andrology 3, 1035–1049 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Shaughnessy, P. J., Hu, L. & Baker, P. J. Effect of germ cell depletion on levels of specific mRNA transcripts in mouse Sertoli cells and Leydig cells. Reproduction 135, 839–850 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Zohni, K., Zhang, X., Tan, S. L., Chan, P. & Nagano, M. C. The efficiency of male fertility restoration is dependent on the recovery kinetics of spermatogonial stem cells after cytotoxic treatment with busulfan in mice. Hum. Reprod. 27, 44–53 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D.-Z., Zhou, X.-H., Yuan, Y.-L. & Zheng, X.-M. Optimal dose of busulfan for depleting testicular germ cells of recipient mice before spermatogonial transplantation. Asian J. Androl. 12, 263–270 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brinster, R. L. & Zimmermann, J. W. Spermatogenesis following male germ-cell transplantation. Proc. Natl. Acad. Sci. U.S.A. 91, 11298–11302 (1994).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goel, S., Fujihara, M., Minami, N., Yamada, M. & Imai, H. Expression of NANOG, but not POU5F1, points to the stem cell potential of primitive germ cells in neonatal pig testis. Reproduction 135, 785–795 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuijk, E. W. et al. PTEN and TRP53 independently suppress Nanog expression in spermatogonial stem cells. Stem Cells Dev. 19, 979–988 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujihara, M., Kim, S. M., Minami, N., Yamada, M. & Imai, H. Characterization and in vitro culture of male germ cells from developing bovine testis. J. Reprod. Dev. 57, 355–364 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goel, S., Reddy, N., Mahla, R. S., Suman, S. K. & Pawar, R. M. Spermatogonial stem cells in the testis of an endangered bovid: Indian black buck (Antilope cervicapra L.). Anim. Reprod. Sci. 126, 251–257 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Ventelä, S., Mäkelä, J., Kulmala, J., Westermarck, J. & Toppari, J. Identification and regulation of a stage-specific stem cell niche enriched by nanog-positive spermatogonial stem cells in the mouse testis. Stem Cells 30, 1008–1020 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Nakanoh, S., Fuse, N., Takahashi, Y. & Agata, K. Verification of chicken nanog as an epiblast marker and identification of chicken pouv as pou5f3 by newly raised antibodies. Dev. Growth Differ. 57, 251–263 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cañón, S., Herranz, C. & Manzanares, M. Germ cell restricted expression of chick Nanog. Dev. Dyn. 235, 2889–2894 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Lavial, F. et al. The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells. Development 134, 3549–3563 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki, M., Abe, K., Yoshinaga, K., Obinata, M. & Furusawa, M. Specific arrest of spermatogenesis caused by apoptotic cell death in transgenic mice. Genes Cells 1, 1077–1086 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamaguchi, S., Kimura, H., Tada, M., Nakatsuji, N. & Tada, T. Nanog expression in mouse germ cell development. Gene Expr. Patterns 5, 639–646 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirabayashi, M. et al. Availability of subfertile transgenic rats expressing the c-myc gene as recipients for spermatogonial transplantation. Transgenic Res. 18, 135–141 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, T. S. Germ cell, stem cell, and genomic modification in birds. J. Stem Cell Res. Ther. https://doi.org/10.4172/2157-7633.1000201 (2014).

    Article 

    Google Scholar
     

  • Sisakhtnezhad, S. et al. The molecular signature and spermatogenesis potential of newborn chicken spermatogonial stem cells in vitro. In Vitro Cell. Dev. Biol. Anim. 51, 415–425 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuijk, E. W. et al. A distinct expression pattern in mammalian testes indicates a conserved role for NANOG in spermatogenesis. PLoS One 5, e10987 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hermann, B. P. et al. Characterization, cryopreservation, and ablation of spermatogonial stem cells in adult rhesus macaques. Stem Cells 25, 2330–2338 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebata, K. T., Zhang, X. & Nagano, M. C. Expression patterns of cell-surface molecules on male germ line stem cells during postnatal mouse development. Mol. Reprod. Dev. 72, 171–181 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hofmann, M. C., Braydich-Stolle, L. & Dym, M. Isolation of male germ-line stem cells; Influence of GDNF. Dev. Biol. 279, 114–124 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gassei, K. & Orwig, K. E. SALL4 expression in gonocytes and spermatogonial clones of postnatal mouse testes. PLoS One 8, e53976 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niedenberger, B. A., Busada, J. T. & Geyer, C. B. Marker expression reveals heterogeneity of spermatogonia in the neonatal mouse testis. Reproduction 149, 329–338 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iwamoto, T. et al. DNA intrastrand cross-link at the 5′-GA-3′ sequence formed by busulfan and its role in the cytotoxic effect. Cancer Sci. 95, 454–458 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, Y. J. et al. Murine male germ cell apoptosis induced by busulfan treatment correlates with loss of c-kit-expression in a Fas/FasL- and p53-independent manner. FEBS Lett. 575, 41–51 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Buageaw, A. et al. GDNF family receptor alpha1 phenotype of spermatogonial stem cells in immature mouse testes. Biol. Reprod. 73, 1011–1016 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naughton, C. K., Jain, S., Strickland, A. M., Gupta, A. & Milbrandt, J. Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate1. Biol. Reprod. 74, 314–321 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valdez, B. C. et al. Altered gene expression in busulfan-resistant human myeloid leukemia. Leuk. Res. 32, 1684–1697 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korn, N., Thurston, R. J., Pooser, B. P. & Scott, T. R. Ultrastructure of spermatozoa from Japanese quail. Poult. Sci. 79, 407–414 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roe, M., McDonald, N., Durrant, B. & Jensen, T. Xenogeneic transfer of adult quail (Coturnix coturnix) spermatogonial stem cells to embryonic chicken (Gallus gallus) hosts: A model for avian conservation1. Biol. Reprod. https://doi.org/10.1095/biolreprod.112.105189 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanatsu-Shinohara, M., Ogonuki, N., Matoba, S., Ogura, A. & Shinohara, T. Autologous transplantation of spermatogonial stem cells restores fertility in congenitally infertile mice. Proc. Natl. Acad. Sci. 117, 7837–7844 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morimoto, H. et al. Spermatogonial stem cell transplantation into nonablated mouse recipient testes. Stem Cell Rep. 16, 1832–1844 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, J. et al. Endoplasmic reticulum stress promotes blood-testis barrier impairment in mice with busulfan-induced oligospermia through PERK-eIF2α signaling pathway. Toxicology 473, 153193 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whyte, J. et al. FGF, insulin, and SMAD signaling cooperate for avian primordial germ cell self-renewal. Stem Cell Rep. 5, 1171–1182 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Jung, K. M. et al. Identification and characterization of primordial germ cells in a vocal learning Neoaves species, the zebra finch. FASEB J. 33, 13825–13836 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. et al. Production of germline chimeric quails following spermatogonial cell transplantation in busulfan-treated testis. Asian J. Androl. 20, 414 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bozkurt, H. H., Aktaş, A., Ulkay, M. B. & Firat, U. B. Sertoli cell proliferation during the post hatching period in domestic fowl. J. Vet. Sci. 8, 219–222 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, J., Walker, S. & Steinman, K. Endocrine Manual for Reproductive Non-Domestic Species (Smithsonian’s National Zoological Park, Conservation and Research Center, 2004).


    Google Scholar
     

  • Pereira, R. J. G., Granzinolli, M. A. M. & Duarte, J. M. B. Annual profile of fecal androgen and glucocorticoid levels in free-living male American kestrels from southern mid-latitude areas. Gen. Comp. Endocrinol. 166, 94–103 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Burrows, W. H. & Quinn, J. P. The collection of spermatozoa from the domestic fowl and Turkey. Poult. Sci. 16, 19–24 (1937).

    Article 

    Google Scholar
     

  • Blank, M. H. et al. Beneficial influence of fetal bovine serum on in vitro cryosurvival of chicken spermatozoa. Cryobiology 95, 103–109 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Losano, J. D. A. et al. Utilisation of sperm-binding assay combined with computer-assisted sperm analysis to evaluate frozen-thawed bull semen. Andrologia 47, 77–84 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lobba, A. R. M., Forni, M. F., Carreira, A. C. O. & Sogayar, M. C. Differential expression of CD90 and CD14 stem cell markers in malignant breast cancer cell lines. Cytometry A 81A, 1084–1091 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Guan, K. et al. Isolation and cultivation of stem cells from adult mouse testes. Nat. Protoc. 4, 143–154 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Latest Intelligence