Jouki, M. et al. Effect of quince seed mucilage edible films incorporated with oregano or thyme essential oil on shelf life extension of refrigerated rainbow trout fillets. Int. J. Food Microbiol. 174, 88–97 (2014).
Tørris, C., Småstuen, M. C. & Molin, M. Nutrients in fish and possible associations with cardiovascular disease risk factors in metabolic syndrome. Nutrients 10(7), 952 (2018).
Mei, J., Ma, X. & Xie, J. Review on natural preservatives for extending fish shelf life. Foods 8(10), 490 (2019).
Soni, B. et al. Purified c-phycoerythrin: Safety studies in rats and protective role against permanganate-mediated fibroblast-DNA damage. J. Appl. Toxicol. 30(6), 542–550 (2010).
Martins, N. et al. Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends Food Sci. Technol. 52, 1–15 (2016).
Ali, M. et al. Oxidative stability and sensoric acceptability of functional fish meat product supplemented with plant−based polyphenolic optimal extracts. Lipids Health Dis. 18(1), 1–16 (2019).
Jasour, M. S. et al. Effects of refrigerated storage on fillet lipid quality of rainbow trout (Oncorhynchus Mykiss) supplemented by α-tocopheryl acetate through diet and direct addition after slaughtering. J. Food Process Technol. 2(124), 2 (2011).
Singh, S. et al. Antimicrobial seafood packaging: A review. J. Food Sci. Technol. 53(6), 2505–2518 (2016).
Aminzare, M. et al. Using natural antioxidants in meat and meat products as preservatives: A review. Adv. Anim. Vet. Sci. 7(5), 417–426 (2019).
Vieira, M. V., Pastrana, L. M. & Fuciños, P. Microalgae encapsulation systems for food, pharmaceutical and cosmetics applications. Mar. Drugs 18(12), 644 (2020).
Dawiec-Liśniewska, A. et al. New trends in biotechnological applications of photosynthetic microorganisms. Biotechnol. Adv. 59, 107988 (2022).
Barone, G.D., et al., Recent Developments In The Production and Utilization of Photosynthetic Microorganisms for Food Applications. (Heliyon, 2023).
Nowruzi, B., Sarvari, G. & Blanco, S. Applications of cyanobacteria in biomedicine. In Handbook of Algal Science, Technology and Medicine 441–453 (Elsevier, 2020).
Chaubey, M. G. et al. Therapeutic potential of cyanobacterial pigment protein phycoerythrin: In silico and in vitro study of BACE1 interaction and in vivo Aβ reduction. Int. J. Boil. Macromol. 134, 368–378 (2019).
Castro-Gerónimo, V. D. et al. C-Phycocyanin: A Phycobiliprotein from spirulina with metabolic syndrome and oxidative stress effects. J. Med. Food https://doi.org/10.1089/jmf.2022.0113 (2023).
Sandybayeva, S. K. et al. Prospects of cyanobacterial pigment production: Biotechnological potential and optimization strategies. Biochem. Eng. J. 187, 108640 (2022).
Dudonne, S. et al. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 57(5), 1768–1774 (2009).
Nowruzi, B., Anvar, S. A. A. & Ahari, H. Extraction, purification and evaluation of antimicrobial and antioxidant properties of phycoerythrin from terrestrial cyanobacterium Nostoc sp. FA1.. J. Microb. World 13(2), 138–153 (2020).
Patel, A. K. et al. Algae as an emerging source of bioactive pigments. Bioresour. Technol. 351, 126910 (2022).
Rajabpour, N., Nowruzi, B. & Ghobeh, M. Investigation of the toxicity, antioxidant and antimicrobial activities of some cyanobacterial strains isolated from different habitats. Acta Biol. Slov. 62(2), 4 (2019).
Andrade, M. A. et al. Novel active food packaging films based on whey protein incorporated with seaweed extract: Development, characterization, and application in fresh poultry meat. Coatings 11(2), 229 (2021).
Nowruzi, B. & Blanco, S. In silico identification and evolutionary analysis of candidate genes involved in the biosynthesis methylproline genes in cyanobacteria strains of Iran. Phytochem. Lett. 29, 199–211 (2019).
Pumas, C. et al. Thermostablility of phycobiliproteins and antioxidant activity from four thermotolerant cyanobacteria. Phycol. Res. 59(3), 166–174 (2011).
Safavi, M. et al. Biological activity of methanol extract from nostoc sp. N42 and fischerella sp. S29 isolated from aquatic and terrestrial ecosystems. Int. J. Algae 21(4), 373–391 (2019).
Dagnino-Leone, J. et al. Phycobiliproteins: Structural aspects, functional characteristics, and biotechnological perspectives. Comput. Struct. Biotechnol. J. 20, 1506–1527 (2022).
Limrujiwat, K., Supan, S. & Khetkorn, W. Cyanobacterial biodiversity from thai karstic caves as a potential source for phycobiliprotein production. Algal Res. 64, 102666 (2022).
Nowruzi, B. and I. Becerra-Absalón, A Novel Potentially Toxic Cyanobacterial Species From the Genus Desmonostoc, Desmonostoc Alborizicum sp. nov., Iisolated From a Water Supply System of IranA. (2022).
Nowruzi, B. & Shalygin, S. Multiple phylogenies reveal a true taxonomic position of Dulcicalothrix alborzica sp. nov. (Nostocales, Cyanobacteria). Fottea 21(2), 235–246 (2021).
Afreen, S. & Fatma, T. Extraction, purification and characterization of phycoerythrin from michrochaete and its biological activities. Biocatal. Agric. Biotechnol. 13, 84–89 (2018).
Chakdar, H. & Pabbi, S. Extraction and purification of phycoerythrin from anabaena variabilis (CCC421). Phykos 42(1), 25–31 (2012).
Tiwari, O. N. et al. Modulation of phycobiliprotein production in Nostoc muscorum through culture manipulation. J. Appl. Biol. Biotechnol. 3(4), 011–016 (2015).
Basheva, D. et al. Content of phycoerythrin, phycocyanin, alophycocyanin and phycoerythrocyanin in some cyanobacterial strains: Applications. Eng. Life Sci. 18(11), 861–866 (2018).
Sonani, R. R. et al. Recent advances in production, purification and applications of phycobiliproteins. World J. Boil. Chem. 7(1), 100 (2016).
Mishra, S. K. et al. Effect of preservatives for food grade C-Phycoerythrin, isolated from marine cyanobacteria Pseudanabaena sp.. Int. J. Boil. Macromol. 47(5), 597–602 (2010).
Nainangu, P. et al. In vitro screening of antimicrobial, antioxidant, cytotoxic activities, and characterization of bioactive substances from freshwater cyanobacteria Oscillatoria sp. SSCM01 and Phormidium sp. SSCM02. Biocatal. Agric. Biotechnol. 29, 101772 (2020).
Sáez, M., Suárez, M. & Martínez, T. Effects of alginate coating enriched with tannins on shelf life of cultured rainbow trout (Oncorhynchus mykiss) fillets. LWT 118, 108767 (2020).
Mari, A. & Antonini, G. Validation of the micro biological survey method for total viable count and E. coli in food samples. Am. J. Food Technol. 6(11), 951–962 (2011).
Raeisi, S. et al. Evaluation of antioxidant and antimicrobial effects of shallot (Allium ascalonicum L.) fruit and ajwain (Trachyspermum ammi (L.) Sprague) seed extracts in semi-fried coated rainbow trout (Oncorhynchus mykiss) fillets for shelf-life extension. LWT-Food Sci. Technol.. 65, 112–121 (2016).
Junior, P. G. et al. Microbiological quality of whole and filleted shelf-tilapia. Aquaculture 433, 196–200 (2014).
Rahman, M. A. et al. Isolation, identification and antibiotic sensitivity pattern of Salmonella spp from locally isolated egg samples. Am. J. Pure Appl. Sci. 1(1), 1–11 (2019).
Sanjee, S. A. & Karim, M. Microbiological quality assessment of frozen fish and fish processing materials from Bangladesh. Int. J. food Sci. 2016, 1–6 (2016).
Fadıloğlu, E. E. & Emir Çoban, Ö. Effects of chitosan edible coatings enriched with sumac on the quality and the shelf life of rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) fillets. J. Food Saf. 38(6), e12545 (2018).
ICMSF. Micro-Organisms in Foods: Microbial Ecology of Food Commodities (Springer, 1998).
Tavares, J. et al. Fresh fish degradation and advances in preservation using physical emerging technologies. Foods 10(4), 780 (2021).
Khadem, P. et al. Effects of capparis spinosa root extract and modified atmosphere packaging on the shelf life of rainbow trout (Oncorhynchus mykiss) fillets by measuring of antioxidant and antimicrobial parameters. Iran. J. Fish. Sci. 19(1), 272–285 (2020).
Kocatepe, D. et al. Effect of modified atmosphere packaging on the shelf life of rainbow trout (Oncorhynchus mykiss, Walbaum 1792) mince. Food Sci. Technol. Int. 22(4), 343–352 (2016).
Ucak, İ et al. Maintaining the quality of rainbow trout (Oncorhynchus mykiss) fillets by treatment of red onion peel extract during refrigerated storage. Prog. Nutr. 20(4), 672–678 (2018).
Sathasivam, R. et al. Microalgae metabolites: A rich source for food and medicine. Saudi J. Boil. Sci. 26(4), 709–722 (2019).
Moraes, C. C. et al. C-phycocyanin extraction from spirulina platensis wet biomass. Braz. J. Chem. Eng. 28(1), 45–49 (2011).
Ferreira-Santos, P. et al. Influence of thermal and electrical effects of ohmic heating on C-phycocyanin properties and biocompounds recovery from Spirulina platensis. Lwt 128, 109491 (2020).
Hadiyanto, H., et al. The nutritional enrichment of dried noodles by using phycocyanin extracted from Spirulina sp as an effort of food fortification. in Journal of Physics: Conference Series. 2019. IOP Publishing.
Hadiyanto, H. & Suttrisnorhadi, S. Response surface optimization of ultrasound assisted extraction (UAE) of phycocyanin from microalgae spirulina platensis. Emir. J. Food Agric. 28, 227–234 (2016).
Jaeschke, D. P. et al. Phycocyanin from spirulina: A review of extraction methods and stability. Food Res. Int. 143, 110314 (2021).
Kamble, S. P. et al. Extraction and purification of C-phycocyanin from dry Spirulina powder and evaluating its antioxidant, anticoagulation and prevention of DNA damage activity. J. Appl. Pharm. Sci. 3(8), 149 (2013).
Kumar, D. et al. Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540). Indian J. Plant Physiol. 19(2), 184–188 (2014).
Seo, Y. C. et al. Stable isolation of phycocyanin from spirulina platensis associated with high-pressure extraction process. Int. J. Mol. Sci. 14(1), 1778–1787 (2013).
Zhang, X. et al. Extraction and separation of phycocyanin from spirulina using aqueous two-phase systems of ionic liquid and salt. J. Food Nutr. Res. 3(1), 15–19 (2015).
Kumar, D. et al. Quantification and Purification of C-Phycocyanin from Cyanobacterial Strains Anabaena and Phormidium (NISCAIR-CSIR, 2019).
Saini, D. K. et al. Phycobiliproteins from Anabaena variabilis CCC421 and its production enhancement strategies using combinatory evolutionary algorithm approach. Bioresour. Technol. 309, 123347 (2020).
Postius, C. et al. Light causes selection among two phycoerythrin-rich synechococcus isolates from lake constance. FEMS Microbial. Ecol. 25(2), 171–178 (1998).
Tripathi, S., Kapoor, S. & Shrivastava, A. Extraction and purification of an unusual phycoerythrin in a terrestrial desiccation tolerant cyanobacterium lyngbya arboricola. J. of Appl. Phycol. 19(5), 441–447 (2007).
Kawsar, S. M. et al. Protein R-phycoerythrin from marine red alga Amphiroa anceps: Extraction, purification and characterization. Phytol. Balc. 17(3), 347–354 (2011).
Gonzalez-Ramirez, E. et al. Thermal and pH stability of the B-phycoerythrin from the red algae porphyridium cruentum. Food Biophys. 9(2), 184–192 (2014).
Rastogi, R. P., Sonani, R. R. & Madamwar, D. Physico-chemical factors affecting the in vitro stability of phycobiliproteins from phormidium rubidum A09DM. Bioresour. Technol. 190, 219–226 (2015).
Vásquez-Suárez, A. et al. The γ33 subunit of R-phycoerythrin from gracilaria chilensis has a typical double linked phycourobilin similar to γ subunit. PloS one 13(4), e0195656 (2018).
Sharma, R. et al. Effects of different monosaccharides on thermal stability of phycobiliproteins from Oscillatoria sp.(BTA-170): Analysis of kinetics, thermodynamics, colour and antioxidant properties. Food Biosci. 44, 101354 (2021).
Sallam, K. I. Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food Control 18(5), 566–575 (2007).
Sarada, D. V., Kumar, C. S. & Rengasamy, R. Purified C-phycocyanin from Spirulina platensis (Nordstedt) Geitler: A novel and potent agent against drug resistant bacteria. World J. Microbiol. Biotechnol. 27(4), 779–783 (2011).
Kołakowska, A. et al. Effects of rainbow trout freshness on n-3 polyunsaturated fatty acids in fish offal. Eur. J. Lipid Sci. Technol. 108(9), 723–729 (2006).
Liu, L.-N. et al. Probing the pH sensitivity of R-phycoerythrin: Investigations of active conformational and functional variation. Biochim. et Biophys. (BBA) Acta Bioenerg. 1787(7), 939–946 (2009).
BEGUM, H. et al. Production and purity of phycobiliproteins from selected marine and freshwater cyanobacteria subjected to different drying methods. Asian Fish. Sci. 33, 258–265 (2020).
Johnson, E. M., Kumar, K. & Das, D. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated nostoc sp. Bioresour. Technol. 166, 541–547 (2014).
Kannaujiya, V. K. & Sinha, R. P. Thermokinetic stability of phycocyanin and phycoerythrin in food-grade preservatives. J. Appl. Phycol. 28(2), 1063–1070 (2016).
Parmar, A. et al. Purification, characterization and comparison of phycoerythrins from three different marine cyanobacterial cultures. Bioresour. Technol. 102(2), 1795–1802 (2011).
Sun, L. et al. Isolation, purification and characteristics of R-phycoerythrin from a marine macroalga heterosiphonia japonica. Protein Expr. Purif. 64(2), 146–154 (2009).
Wang, L. et al. Isolation, purification and properties of an R-phycocyanin from the phycobilisomes of a marine red macroalga polysiphonia urceolata. PloS one 9(2), e87833 (2014).
Zhao, M. et al. Phycoerythrins in phycobilisomes from the marine red alga Polysiphonia urceolata. Int. J. Boil. Macromol. 73, 58–64 (2015).
de Amarante, M. C. A. et al. Design strategies for C-phycocyanin purification: Process influence on purity grade. Sep. Purif. Technol. 252, 117453 (2020).
Galetović, A. et al. Use of phycobiliproteins from atacama cyanobacteria as food colorants in a dairy beverage prototype. Foods 9(2), 244 (2020).
Sudhakar, M. et al. Methods of phycobiliprotein extraction from Gracilaria crassa and its applications in food colourants. Algal Res. 8, 115–120 (2015).
Agustini, T. et al. Application of basil leaf extracts to decrease Spirulina platensis off-odour in increasing food consumption. Int. Food Res. J. 26(6), 1789–1794 (2019).
Andrade, L. et al. Chlorella and spirulina microalgae as sources of functional foods. Nutr. Food Suppl. 6(1), 45–58 (2018).
Hussein, M., El-Naggar, N. & El-Sawah, A. Extraction, purification and spectroscopic characterization of phycobiliproteins extracted from some Nostoc spp. J. Agric. Chem. Biotechnol. 8(10), 261–264 (2017).
Abd El Baky, H. H., El Baroty, G. S. & Ibrahem, E. A. Functional characters evaluation of biscuits sublimated with pure phycocyanin isolated from Spirulina and Spirulina biomass. Nutr. Hosp. 32(1), 231–241 (2015).
Shalaby, E. A. & Shanab, S. M. Comparison of DPPH and ABTS Assays For Determining Antioxidant Potential Of Water And Methanol Extracts Of Spirulina Platensis (NISCAIR-CSIR, 2013).
da Silva, S. C. et al. Spray-dried spirulina platensis as an effective ingredient to improve yogurt formulations: Testing different encapsulating solutions. J. Funct. Foods 60, 103427 (2019).
Hui, Y. Factors affecting food quality primer. In Handbook of Meat Poultry And Seafood Quality (ed. Nollet, L. M. L.) 3–6 (Wiley, 2007).
Saini, D. K., Pabbi, S. & Shukla, P. Cyanobacterial pigments: Perspectives and biotechnological approaches. Food Chem. Toxicol. 120, 616–624 (2018).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-52985-6