Studying the impact of phycoerythrin on antioxidant and antimicrobial activity of the fresh rainbow trout fillets – Scientific Reports

  • Jouki, M. et al. Effect of quince seed mucilage edible films incorporated with oregano or thyme essential oil on shelf life extension of refrigerated rainbow trout fillets. Int. J. Food Microbiol. 174, 88–97 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tørris, C., Småstuen, M. C. & Molin, M. Nutrients in fish and possible associations with cardiovascular disease risk factors in metabolic syndrome. Nutrients 10(7), 952 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mei, J., Ma, X. & Xie, J. Review on natural preservatives for extending fish shelf life. Foods 8(10), 490 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soni, B. et al. Purified c-phycoerythrin: Safety studies in rats and protective role against permanganate-mediated fibroblast-DNA damage. J. Appl. Toxicol. 30(6), 542–550 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martins, N. et al. Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends Food Sci. Technol. 52, 1–15 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ali, M. et al. Oxidative stability and sensoric acceptability of functional fish meat product supplemented with plant−based polyphenolic optimal extracts. Lipids Health Dis. 18(1), 1–16 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Jasour, M. S. et al. Effects of refrigerated storage on fillet lipid quality of rainbow trout (Oncorhynchus Mykiss) supplemented by α-tocopheryl acetate through diet and direct addition after slaughtering. J. Food Process Technol. 2(124), 2 (2011).


    Google Scholar
     

  • Singh, S. et al. Antimicrobial seafood packaging: A review. J. Food Sci. Technol. 53(6), 2505–2518 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aminzare, M. et al. Using natural antioxidants in meat and meat products as preservatives: A review. Adv. Anim. Vet. Sci. 7(5), 417–426 (2019).

    Article 

    Google Scholar
     

  • Vieira, M. V., Pastrana, L. M. & Fuciños, P. Microalgae encapsulation systems for food, pharmaceutical and cosmetics applications. Mar. Drugs 18(12), 644 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dawiec-Liśniewska, A. et al. New trends in biotechnological applications of photosynthetic microorganisms. Biotechnol. Adv. 59, 107988 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Barone, G.D., et al., Recent Developments In The Production and Utilization of Photosynthetic Microorganisms for Food Applications. (Heliyon, 2023).

  • Nowruzi, B., Sarvari, G. & Blanco, S. Applications of cyanobacteria in biomedicine. In Handbook of Algal Science, Technology and Medicine 441–453 (Elsevier, 2020).

    Chapter 

    Google Scholar
     

  • Chaubey, M. G. et al. Therapeutic potential of cyanobacterial pigment protein phycoerythrin: In silico and in vitro study of BACE1 interaction and in vivo Aβ reduction. Int. J. Boil. Macromol. 134, 368–378 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Castro-Gerónimo, V. D. et al. C-Phycocyanin: A Phycobiliprotein from spirulina with metabolic syndrome and oxidative stress effects. J. Med. Food https://doi.org/10.1089/jmf.2022.0113 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Sandybayeva, S. K. et al. Prospects of cyanobacterial pigment production: Biotechnological potential and optimization strategies. Biochem. Eng. J. 187, 108640 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dudonne, S. et al. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 57(5), 1768–1774 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nowruzi, B., Anvar, S. A. A. & Ahari, H. Extraction, purification and evaluation of antimicrobial and antioxidant properties of phycoerythrin from terrestrial cyanobacterium Nostoc sp. FA1.. J. Microb. World 13(2), 138–153 (2020).


    Google Scholar
     

  • Patel, A. K. et al. Algae as an emerging source of bioactive pigments. Bioresour. Technol. 351, 126910 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rajabpour, N., Nowruzi, B. & Ghobeh, M. Investigation of the toxicity, antioxidant and antimicrobial activities of some cyanobacterial strains isolated from different habitats. Acta Biol. Slov. 62(2), 4 (2019).


    Google Scholar
     

  • Andrade, M. A. et al. Novel active food packaging films based on whey protein incorporated with seaweed extract: Development, characterization, and application in fresh poultry meat. Coatings 11(2), 229 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nowruzi, B. & Blanco, S. In silico identification and evolutionary analysis of candidate genes involved in the biosynthesis methylproline genes in cyanobacteria strains of Iran. Phytochem. Lett. 29, 199–211 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Pumas, C. et al. Thermostablility of phycobiliproteins and antioxidant activity from four thermotolerant cyanobacteria. Phycol. Res. 59(3), 166–174 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Safavi, M. et al. Biological activity of methanol extract from nostoc sp. N42 and fischerella sp. S29 isolated from aquatic and terrestrial ecosystems. Int. J. Algae 21(4), 373–391 (2019).

    Article 

    Google Scholar
     

  • Dagnino-Leone, J. et al. Phycobiliproteins: Structural aspects, functional characteristics, and biotechnological perspectives. Comput. Struct. Biotechnol. J. 20, 1506–1527 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Limrujiwat, K., Supan, S. & Khetkorn, W. Cyanobacterial biodiversity from thai karstic caves as a potential source for phycobiliprotein production. Algal Res. 64, 102666 (2022).

    Article 

    Google Scholar
     

  • Nowruzi, B. and I. Becerra-Absalón, A Novel Potentially Toxic Cyanobacterial Species From the Genus Desmonostoc, Desmonostoc Alborizicum sp. nov., Iisolated From a Water Supply System of IranA. (2022).

  • Nowruzi, B. & Shalygin, S. Multiple phylogenies reveal a true taxonomic position of Dulcicalothrix alborzica sp. nov. (Nostocales, Cyanobacteria). Fottea 21(2), 235–246 (2021).

    Article 

    Google Scholar
     

  • Afreen, S. & Fatma, T. Extraction, purification and characterization of phycoerythrin from michrochaete and its biological activities. Biocatal. Agric. Biotechnol. 13, 84–89 (2018).

    Article 

    Google Scholar
     

  • Chakdar, H. & Pabbi, S. Extraction and purification of phycoerythrin from anabaena variabilis (CCC421). Phykos 42(1), 25–31 (2012).


    Google Scholar
     

  • Tiwari, O. N. et al. Modulation of phycobiliprotein production in Nostoc muscorum through culture manipulation. J. Appl. Biol. Biotechnol. 3(4), 011–016 (2015).

    CAS 

    Google Scholar
     

  • Basheva, D. et al. Content of phycoerythrin, phycocyanin, alophycocyanin and phycoerythrocyanin in some cyanobacterial strains: Applications. Eng. Life Sci. 18(11), 861–866 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sonani, R. R. et al. Recent advances in production, purification and applications of phycobiliproteins. World J. Boil. Chem. 7(1), 100 (2016).

    Article 

    Google Scholar
     

  • Mishra, S. K. et al. Effect of preservatives for food grade C-Phycoerythrin, isolated from marine cyanobacteria Pseudanabaena sp.. Int. J. Boil. Macromol. 47(5), 597–602 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Nainangu, P. et al. In vitro screening of antimicrobial, antioxidant, cytotoxic activities, and characterization of bioactive substances from freshwater cyanobacteria Oscillatoria sp. SSCM01 and Phormidium sp. SSCM02. Biocatal. Agric. Biotechnol. 29, 101772 (2020).

    Article 

    Google Scholar
     

  • Sáez, M., Suárez, M. & Martínez, T. Effects of alginate coating enriched with tannins on shelf life of cultured rainbow trout (Oncorhynchus mykiss) fillets. LWT 118, 108767 (2020).

    Article 

    Google Scholar
     

  • Mari, A. & Antonini, G. Validation of the micro biological survey method for total viable count and E. coli in food samples. Am. J. Food Technol. 6(11), 951–962 (2011).

    Article 

    Google Scholar
     

  • Raeisi, S. et al. Evaluation of antioxidant and antimicrobial effects of shallot (Allium ascalonicum L.) fruit and ajwain (Trachyspermum ammi (L.) Sprague) seed extracts in semi-fried coated rainbow trout (Oncorhynchus mykiss) fillets for shelf-life extension. LWT-Food Sci. Technol.. 65, 112–121 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Junior, P. G. et al. Microbiological quality of whole and filleted shelf-tilapia. Aquaculture 433, 196–200 (2014).

    Article 

    Google Scholar
     

  • Rahman, M. A. et al. Isolation, identification and antibiotic sensitivity pattern of Salmonella spp from locally isolated egg samples. Am. J. Pure Appl. Sci. 1(1), 1–11 (2019).

    MathSciNet 

    Google Scholar
     

  • Sanjee, S. A. & Karim, M. Microbiological quality assessment of frozen fish and fish processing materials from Bangladesh. Int. J. food Sci. 2016, 1–6 (2016).

    Article 

    Google Scholar
     

  • Fadıloğlu, E. E. & Emir Çoban, Ö. Effects of chitosan edible coatings enriched with sumac on the quality and the shelf life of rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) fillets. J. Food Saf. 38(6), e12545 (2018).

    Article 

    Google Scholar
     

  • ICMSF. Micro-Organisms in Foods: Microbial Ecology of Food Commodities (Springer, 1998).

    Book 

    Google Scholar
     

  • Tavares, J. et al. Fresh fish degradation and advances in preservation using physical emerging technologies. Foods 10(4), 780 (2021).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khadem, P. et al. Effects of capparis spinosa root extract and modified atmosphere packaging on the shelf life of rainbow trout (Oncorhynchus mykiss) fillets by measuring of antioxidant and antimicrobial parameters. Iran. J. Fish. Sci. 19(1), 272–285 (2020).


    Google Scholar
     

  • Kocatepe, D. et al. Effect of modified atmosphere packaging on the shelf life of rainbow trout (Oncorhynchus mykiss, Walbaum 1792) mince. Food Sci. Technol. Int. 22(4), 343–352 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ucak, İ et al. Maintaining the quality of rainbow trout (Oncorhynchus mykiss) fillets by treatment of red onion peel extract during refrigerated storage. Prog. Nutr. 20(4), 672–678 (2018).

    CAS 

    Google Scholar
     

  • Sathasivam, R. et al. Microalgae metabolites: A rich source for food and medicine. Saudi J. Boil. Sci. 26(4), 709–722 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Moraes, C. C. et al. C-phycocyanin extraction from spirulina platensis wet biomass. Braz. J. Chem. Eng. 28(1), 45–49 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Ferreira-Santos, P. et al. Influence of thermal and electrical effects of ohmic heating on C-phycocyanin properties and biocompounds recovery from Spirulina platensis. Lwt 128, 109491 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hadiyanto, H., et al. The nutritional enrichment of dried noodles by using phycocyanin extracted from Spirulina sp as an effort of food fortification. in Journal of Physics: Conference Series. 2019. IOP Publishing.

  • Hadiyanto, H. & Suttrisnorhadi, S. Response surface optimization of ultrasound assisted extraction (UAE) of phycocyanin from microalgae spirulina platensis. Emir. J. Food Agric. 28, 227–234 (2016).

    Article 

    Google Scholar
     

  • Jaeschke, D. P. et al. Phycocyanin from spirulina: A review of extraction methods and stability. Food Res. Int. 143, 110314 (2021).

    Article 

    Google Scholar
     

  • Kamble, S. P. et al. Extraction and purification of C-phycocyanin from dry Spirulina powder and evaluating its antioxidant, anticoagulation and prevention of DNA damage activity. J. Appl. Pharm. Sci. 3(8), 149 (2013).


    Google Scholar
     

  • Kumar, D. et al. Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540). Indian J. Plant Physiol. 19(2), 184–188 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seo, Y. C. et al. Stable isolation of phycocyanin from spirulina platensis associated with high-pressure extraction process. Int. J. Mol. Sci. 14(1), 1778–1787 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Extraction and separation of phycocyanin from spirulina using aqueous two-phase systems of ionic liquid and salt. J. Food Nutr. Res. 3(1), 15–19 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kumar, D. et al. Quantification and Purification of C-Phycocyanin from Cyanobacterial Strains Anabaena and Phormidium (NISCAIR-CSIR, 2019).


    Google Scholar
     

  • Saini, D. K. et al. Phycobiliproteins from Anabaena variabilis CCC421 and its production enhancement strategies using combinatory evolutionary algorithm approach. Bioresour. Technol. 309, 123347 (2020).

    Article 

    Google Scholar
     

  • Postius, C. et al. Light causes selection among two phycoerythrin-rich synechococcus isolates from lake constance. FEMS Microbial. Ecol. 25(2), 171–178 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Tripathi, S., Kapoor, S. & Shrivastava, A. Extraction and purification of an unusual phycoerythrin in a terrestrial desiccation tolerant cyanobacterium lyngbya arboricola. J. of Appl. Phycol. 19(5), 441–447 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Kawsar, S. M. et al. Protein R-phycoerythrin from marine red alga Amphiroa anceps: Extraction, purification and characterization. Phytol. Balc. 17(3), 347–354 (2011).


    Google Scholar
     

  • Gonzalez-Ramirez, E. et al. Thermal and pH stability of the B-phycoerythrin from the red algae porphyridium cruentum. Food Biophys. 9(2), 184–192 (2014).

    Article 

    Google Scholar
     

  • Rastogi, R. P., Sonani, R. R. & Madamwar, D. Physico-chemical factors affecting the in vitro stability of phycobiliproteins from phormidium rubidum A09DM. Bioresour. Technol. 190, 219–226 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vásquez-Suárez, A. et al. The γ33 subunit of R-phycoerythrin from gracilaria chilensis has a typical double linked phycourobilin similar to γ subunit. PloS one 13(4), e0195656 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, R. et al. Effects of different monosaccharides on thermal stability of phycobiliproteins from Oscillatoria sp.(BTA-170): Analysis of kinetics, thermodynamics, colour and antioxidant properties. Food Biosci. 44, 101354 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sallam, K. I. Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food Control 18(5), 566–575 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarada, D. V., Kumar, C. S. & Rengasamy, R. Purified C-phycocyanin from Spirulina platensis (Nordstedt) Geitler: A novel and potent agent against drug resistant bacteria. World J. Microbiol. Biotechnol. 27(4), 779–783 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kołakowska, A. et al. Effects of rainbow trout freshness on n-3 polyunsaturated fatty acids in fish offal. Eur. J. Lipid Sci. Technol. 108(9), 723–729 (2006).

    Article 

    Google Scholar
     

  • Liu, L.-N. et al. Probing the pH sensitivity of R-phycoerythrin: Investigations of active conformational and functional variation. Biochim. et Biophys. (BBA) Acta Bioenerg. 1787(7), 939–946 (2009).

    Article 
    CAS 

    Google Scholar
     

  • BEGUM, H. et al. Production and purity of phycobiliproteins from selected marine and freshwater cyanobacteria subjected to different drying methods. Asian Fish. Sci. 33, 258–265 (2020).


    Google Scholar
     

  • Johnson, E. M., Kumar, K. & Das, D. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated nostoc sp. Bioresour. Technol. 166, 541–547 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kannaujiya, V. K. & Sinha, R. P. Thermokinetic stability of phycocyanin and phycoerythrin in food-grade preservatives. J. Appl. Phycol. 28(2), 1063–1070 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Parmar, A. et al. Purification, characterization and comparison of phycoerythrins from three different marine cyanobacterial cultures. Bioresour. Technol. 102(2), 1795–1802 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, L. et al. Isolation, purification and characteristics of R-phycoerythrin from a marine macroalga heterosiphonia japonica. Protein Expr. Purif. 64(2), 146–154 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Isolation, purification and properties of an R-phycocyanin from the phycobilisomes of a marine red macroalga polysiphonia urceolata. PloS one 9(2), e87833 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, M. et al. Phycoerythrins in phycobilisomes from the marine red alga Polysiphonia urceolata. Int. J. Boil. Macromol. 73, 58–64 (2015).

    Article 
    CAS 

    Google Scholar
     

  • de Amarante, M. C. A. et al. Design strategies for C-phycocyanin purification: Process influence on purity grade. Sep. Purif. Technol. 252, 117453 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Galetović, A. et al. Use of phycobiliproteins from atacama cyanobacteria as food colorants in a dairy beverage prototype. Foods 9(2), 244 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sudhakar, M. et al. Methods of phycobiliprotein extraction from Gracilaria crassa and its applications in food colourants. Algal Res. 8, 115–120 (2015).

    Article 
    MathSciNet 

    Google Scholar
     

  • Agustini, T. et al. Application of basil leaf extracts to decrease Spirulina platensis off-odour in increasing food consumption. Int. Food Res. J. 26(6), 1789–1794 (2019).

    CAS 

    Google Scholar
     

  • Andrade, L. et al. Chlorella and spirulina microalgae as sources of functional foods. Nutr. Food Suppl. 6(1), 45–58 (2018).


    Google Scholar
     

  • Hussein, M., El-Naggar, N. & El-Sawah, A. Extraction, purification and spectroscopic characterization of phycobiliproteins extracted from some Nostoc spp. J. Agric. Chem. Biotechnol. 8(10), 261–264 (2017).

    CAS 

    Google Scholar
     

  • Abd El Baky, H. H., El Baroty, G. S. & Ibrahem, E. A. Functional characters evaluation of biscuits sublimated with pure phycocyanin isolated from Spirulina and Spirulina biomass. Nutr. Hosp. 32(1), 231–241 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Shalaby, E. A. & Shanab, S. M. Comparison of DPPH and ABTS Assays For Determining Antioxidant Potential Of Water And Methanol Extracts Of Spirulina Platensis (NISCAIR-CSIR, 2013).


    Google Scholar
     

  • da Silva, S. C. et al. Spray-dried spirulina platensis as an effective ingredient to improve yogurt formulations: Testing different encapsulating solutions. J. Funct. Foods 60, 103427 (2019).

    Article 

    Google Scholar
     

  • Hui, Y. Factors affecting food quality primer. In Handbook of Meat Poultry And Seafood Quality (ed. Nollet, L. M. L.) 3–6 (Wiley, 2007).

    Chapter 

    Google Scholar
     

  • Saini, D. K., Pabbi, S. & Shukla, P. Cyanobacterial pigments: Perspectives and biotechnological approaches. Food Chem. Toxicol. 120, 616–624 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar