Search
Close this search box.

Study of the physicochemical characteristics, antimicrobial activity, and in vitro multiplication of wild blackberry species from the Peruvian highlands – Scientific Reports

  • Wu, J.-H., Miller, S. A., Hall, H. K. & Mooney, P. A. Factors affecting the efficiency of micropropagation from lateral buds and shoot tips of Rubus. Plant Cell Tissue Organ Cult. PCTOC 99, 17–25 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Moreno, G. A. L., Espinosa, N., Barrero, L. S. & Medina, C. I. Variabilidad morfológica de variedades nativas de mora (Rubus sp.) en los Andes de Colombia. Rev. Colomb. Cienc. Hortícolas 10, 211–221 (2016).

    Article 

    Google Scholar
     

  • Raseira, M. C. B., Franzon, R. C., Feldberg, N. P., Antunes, L. E. C. & Scaranari, C. BRS Cainguá, a blackberry fresh-market cultivar. Crop Breed. Appl. Biotechnol. 20, 27812014 (2020).

    Article 

    Google Scholar
     

  • Reyes-Carmona, J., Yousef, G. G., Martínez-Peniche, R. A. & Lila, M. A. Antioxidant capacity of fruit extracts of blackberry (Rubus sp.) produced in different climatic regions. J. Food Sci. 70, s497–s503 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Vizzotto, M., Raseira, M. C. B., Pereira, M. C. & Fetter, M. Teor de compostos fenólicos e atividade antioxidante em diferentes genótipos de amoreira-preta (Rubus sp). Rev Bras Frutic. 34, 853–858 (2012).

    Article 

    Google Scholar
     

  • Millones, C. Establecimiento y ensayos preliminares de propagación in vitro de zarzamora silvestre (Rubus Sp) del Centro Poblado San Salvador, región Amazonas. Rev. Científica UNTRM Cienc. Nat. E Ing. 1, 31–38 (2018).

    Article 

    Google Scholar
     

  • Escalante, S. B., Chuquilín, J. Y. & Saldaña, E. Identificación botánica y evaluación de los parámetros de calidad de los frutos de zarzamora (Rubus spp), en el distrito de Namora. Cajamarca-Perú. Rev. Caxamarca 16, 51–61 (2017).


    Google Scholar
     

  • Tineo, D., Bustamante, D. E., Calderon, M. S. & Huaman, E. Exploring the diversity of andean berries from northern Peru based on molecular analyses. Heliyon 8, e08839 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caruso, M. C. et al. Nutraceutical properties of wild berry fruits from Southern Italy. J. Berry Res. 6, 321–332 (2016).

    Article 

    Google Scholar
     

  • Mikulic-Petkovsek, M. et al. Investigation of anthocyanin profile of four elderberry species and interspecific hybrids. J. Agric. Food Chem. 62, 5573–5580 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abu Bakar, M. F., Ismail, N. A., Isha, A. & Mei Ling, A. L. Phytochemical composition and biological activities of selected wild berries (Rubus moluccanus .L, R. fraxinifolius Poir, and R. alpestris Blume). Evid. Based Complement. Alternat. Med. 2016, e2482930 (2016).

    Article 

    Google Scholar
     

  • Grande-Tovar, C., Araujo-Pabón, L., Flórez-López, E. & Aranaga-Arias, C. Determinación de la actividad antioxidante y antimicrobiana de residuos de mora (Rubus glaucus Benth). Inf. Téc. 85, 64–82 (2021).

    Article 

    Google Scholar
     

  • Krzepiłko, A., Prażak, R. & Święciło, A. Chemical composition, antioxidant and antimicrobial activity of raspberry, blackberry and raspberry-blackberry hybrid leaf buds. Molecules 26, 327 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliveira, B. D. et al. Antioxidant, antimicrobial and anti-quorum sensing activities of Rubus rosaefolius phenolic extract. Ind. Crops Prod. 84, 59–66 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Soto, M., Pérez, A. M., Cerdas, M., Vaillant, F. & Acosta, Ó. Physicochemical characteristics and polyphenolic compounds of cultivated blackberries in Costa Rica. J. Berry Res. 9, 283–296 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cancino-Escalante, G. O., Quevedo García, E., Villamizar, C. E. & Díaz Carvajal, C. Propagación in vitro de materiales seleccionados de Rubus glaucus Benth (mora de Castilla) en la provincia de Pamplona, región nororiental de Colombia. Rev Colomb Biotecnol. 17, 7–15 (2015).

    Article 

    Google Scholar
     

  • Pelizza, T. R. et al. In vitro establishment of blackberry (Rubus sp.) cultivar ‘Xavante’. Ciênc. Rural 46, 1542–1545 (2016).

    Article 

    Google Scholar
     

  • Borsai, O. et al. Evaluation of genetic fidelity of in vitro-propagated blackberry plants using RAPD and SRAP molecular markers. Hortic. Sci. 47, 21–27 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Villa, F., de Araújo, A. G., Pio, L. A. S. & Pasqual, M. Multiplicação in vitro da amoreira-preta ‘ÉBANO’ em diferentes concentrações de meio MS e BAP. Ciênc. E Agrotecnologia 29, 582–589 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Najaf-Abadi, A. J. & Hamidoghli, Y. Micropropagation of thornless trailing blackberry (Rubus sp.) by axillary bud explants. Aust. J. Crop Sci. 3, 191–194 (2009).

    CAS 

    Google Scholar
     

  • Fascella, G. et al. Bioactive compounds and antioxidant activity of four rose hip species from spontaneous Sicilian flora. Food Chem. 289, 56–64 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Albert, C. et al. Study of antioxidant activity of garden blackberries (Rubus fruticosus L.) extracts obtained with different extraction solvents. Appl. Sci. 12, 4004 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, F. et al. Enzymatic and non-enzymatic bioactive compounds, and antioxidant and antimicrobial activities of the extract from one selected wild berry (Rubus coreanus) as novel natural agent for food preservation. LWT 171, 114133 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).

    Article 
    CAS 

    Google Scholar
     

  • Talcott, S. T. Chemical Components of Berry Fruits. In Berry Fruit: Value-Added Products for Health Promotion (ed. Zhao, Y.) (CRC Press, 2007).


    Google Scholar
     

  • Acosta-Montoya, Ó. et al. Phenolic content and antioxidant capacity of tropical highland blackberry (Rubus adenotrichus Schltdl) during three edible maturity stages. Food Chem. 119, 1497–1501 (2010).

    Article 
    CAS 

    Google Scholar
     

  • de Souza, V. R. et al. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem. 156, 362–368 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Giovanelli, G., Limbo, S. & Buratti, S. Effects of new packaging solutions on physico-chemical, nutritional and aromatic characteristics of red raspberries (Rubus idaeus L.) in postharvest storage. Postharvest Biol. Technol. 98, 72–81 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Mditshwa, A., Magwaza, L. S., Tesfay, S. Z. & Mbili, N. Postharvest quality and composition of organically and conventionally produced fruits: A review. Sci. Hortic. 216, 148–159 (2017).

    Article 

    Google Scholar
     

  • Schulz, M. & Chim, J. F. Nutritional and bioactive value of Rubus berries. Food Biosci. 31, 100438 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J. W. & Choi, I. S. Comparison of the phenolic composition and antioxidant activity of Korean black raspberry, Bokbunja, (Rubus coreanus Miquel) with those of six other berries. CyTA J. Food 15, 110–117 (2017).

    CAS 

    Google Scholar
     

  • Burns Kraft, T. F. et al. Phytochemical composition and metabolic performance-enhancing activity of dietary berries traditionally used by native North Americans. J. Agric. Food Chem. 56, 654–660 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gil-Martínez, L. et al. Phytochemicals determination, and antioxidant, antimicrobial, anti-inflammatory and anticancer activities of blackberry fruits. Foods 12, 1505 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Celant, V. M., Braga, G. C., Vorpagel, J. A. & Salibe, A. B. Phenolic composition and antioxidant capacity of aqueous and ethanolic extracts of blackberries. Rev. Bras. Frutic. 38, e-411 (2016).

    Article 

    Google Scholar
     

  • Yousefbeyk, F. et al. Phytochemical analysis, antioxidant, antibacterial, and cytotoxic activities of leaves and roots of Rubus hyrcanus Juz. Eur. Food Res. Technol. 248, 141–152 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J., Dossett, M. & Finn, C. E. Rubus fruit phenolic research: The good, the bad, and the confusing. Food Chem. 130, 785–796 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Rigolon, T. C. B., de Barros, F. A. R., Vieira, É. N. R. & Stringheta, P. C. Prediction of total phenolics, anthocyanins and antioxidant capacity of blackberry (Rubus sp.), blueberry (Vaccinium sp.) and jaboticaba (Plinia cauliflora (Mart) Kausel) skin using colorimetric parameters. Food Sci. Technol. 40, 620–625 (2020).

    Article 

    Google Scholar
     

  • McCullough, A. R., Parekh, S., Rathbone, J., Del Mar, C. B. & Hoffmann, T. C. A systematic review of the public’s knowledge and beliefs about antibiotic resistance. J. Antimicrob. Chemother. 71, 27–33 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sellappan, S., Akoh, C. C. & Krewer, G. Phenolic compounds and antioxidant capacity of georgia-grown blueberries and blackberries. J. Agric. Food Chem. 50, 2432–2438 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wada, L. & Ou, B. Antioxidant activity and phenolic content of oregon caneberries. J. Agric. Food Chem. 50, 3495–3500 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y., Yang, W., Tang, F., Chen, X. & Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem. 22, 132–149 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adamczak, A., Ożarowski, M. & Karpiński, T. M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J. Clin. Med. 9, 109 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nikaido, H. & Vaara, M. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49, 1–32 (1985).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seleshe, S. et al. Evaluation of antioxidant and antimicrobial activities of ethanol extracts of three kinds of strawberries. Prev. Nutr. Food Sci. 22, 203–210 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puupponen-Pimiä, R. et al. Antimicrobial properties of phenolic compounds from Finnish berries. (1999).

  • Chen, Y. et al. Characterization and functional properties of a pectin/tara gum based edible film with ellagitannins from the unripe fruits of Rubus chingii Hu. Food Chem. 325, 126964 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krauze-Baranowska, M. et al. The antimicrobial activity of fruits from some cultivar varieties of Rubus idaeus and Rubus occidentalis. Food Funct. 5, 2536–2541 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mannino, G. et al. Phytochemical profile and antioxidant, antiproliferative, and antimicrobial properties of Rubus idaeus seed powder. Foods 11, 2605 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bintsis, T. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiol. 4, 665–684 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aremu, A. O. et al. Auxin-cytokinin interaction and variations in their metabolic products in the regulation of organogenesis in two Eucomis species. New Biotechnol. 33, 883–890 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Fira, A., Clapa, D. & Simu, M. Studies regarding the micropropagation of some blackberry cultivars. Bull. UASVM Hortic. 71, 29–37 (2014).


    Google Scholar
     

  • Kefayeti, S., Kafkas, E. & Ercisli, S. Micropropagation of ‘chester thornless’ blackberry cultivar using axillary bud explants. Not. Bot. Horti Agrobot. Cluj-Napoca 47, 162–168 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Schiehl, M., de França, T. O. & Biasi, L. A. Adequação de protocolo para cultivo in vitro de amoreira-preta (Rubus sp) ‘Xingu’. J. Biotechnol. Biodivers. 8, 079–087 (2020).

    Article 

    Google Scholar
     

  • Khan, N. et al. Optimizing the concentrations of plant growth regulators for in vitro shoot cultures, callus induction and shoot regeneration from calluses of grapes. OENO One 49, 37–45 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bueno, P. M. C., Biasi, L. A. & Tofanelli, M. B. D. Micropropagation protocol for the wild Brazilian greenberry (Rubus erythroclados). Rev. Colomb. Cienc. Hortícolas 12, 405–415 (2018).

    Article 

    Google Scholar
     

  • Bueno, P. M. C. & Biasi, L. A. Micropropagation of Greenberry (Rubus erythroclados). Acta Hortic. https://doi.org/10.17660/ActaHortic.2015.1083.48 (2015).

    Article 

    Google Scholar
     

  • Schuchovski, C. S. & Biasi, L. A. Development of an efficient protocol for ‘Brazos’ blackberry in vitro multiplication. Acta Hortic. https://doi.org/10.17660/ActaHortic.2018.1224.21 (2018).

    Article 

    Google Scholar
     

  • Fal, M. A., Majada, J. P. & Sánchez Tamés, R. Physical environment in non-ventilated culture vessels affects in vitro growth and morphogenesis of several cultivars of Dianthus Caryophyllus L. Vitro Cell Dev. Biol. Plant 38, 589–594 (2002).

    Article 

    Google Scholar
     

  • Vega, M. S. Inducción in vitro de variación somaclonal en selecciones de zarzamora (Rubus subgénero Eubatus) productoras en primocañas. (Universidad Michoacana de San Nicolás de Hidalgo, 2016).