Gosline, J. M., Guerette, P. A., Ortlepp, C. S. & Savage, K. N. The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295–3303 (1999).
Vollrath, F., Barth, P., Basedow, A., Engström, W. & List, H. Local tolerance to spider silks and protein polymers in vivo. Vivo 16, 229–234 (2002).
Holland, C., Numata, K., Rnjak-Kovacina, J. & Seib, F. P. The biomedical use of silk: past, present, future. Adv. Healthc. Mater. 8, e1800465 (2019).
Kiseleva, A. P., Krivoshapkin, P. V. & Krivoshapkina, E. F. Recent advances in development of functional spider silk-based hybrid materials. Front Chem. 8, 554 (2020).
Askarieh, G. et al. Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature 465, 236–U125 (2010).
Stark, M. et al. Macroscopic fibers self-assembled from recombinant miniature spider silk proteins. Biomacromolecules 8, 1695–1701 (2007).
Hedhammar, M. et al. Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: implications for fiber formation. Biochemistry 47, 3407–3417 (2008).
Jiang, W., Askarieh, G., Shkumatov, A., Hedhammar, M. & Knight, S. D. Structure of the N-terminal domain of Euprosthenops australis dragline silk suggests that conversion of spidroin dope to spider silk involves a conserved asymmetric dimer intermediate. Acta Crystallogr D. Struct. Biol. 75, 618–627 (2019).
Lazaris, A. et al. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295, 472–476 (2002).
Winkler, S. et al. Designing recombinant spider silk proteins to control assembly. Int. J. Biol. Macromol. 24, 265–270 (1999).
Ramezaniaghdam, M., Nahdi, N. D. & Reski, R. Recombinant spider silk: promises and bottlenecks. Front Bioeng. Biotechnol. 10, 835637 (2022).
Andersson, M. et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat. Chem. Biol. 13, 262–264 (2017).
Liivak, O., Blye, A., Shah, N. & Jelinski, L. W. A microfabricated wet-spinning apparatus to spin fibers of silk proteins. structure−property correlations. Macromolecules 31, 2947–2951 (1998).
Stephens, J. S. et al. Effects of electrospinning and solution casting protocols on the secondary structure of a genetically engineered dragline spider silk analogue investigated via Fourier transform Raman spectroscopy. Biomacromolecules 6, 1405–1413 (2005).
Greiner, A. & Wendorff, J. H. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. Engl. 46, 5670–5703 (2007).
Hedhammar, M. et al. Sterilized recombinant spider silk fibers of low pyrogenicity. Biomacromolecules 11, 953–959 (2010).
Hagn, F. et al. A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465, 239–U131 (2010).
Sponner, A., Unger, E., Grosse, F. & Weisshart, K. Conserved C-termini of spidroins are secreted by the major ampullate glands and retained in the silk thread. Biomacromolecules 5, 840–845 (2004).
Andersson, M. et al. Carbonic anhydrase generates CO2 and H+ that drive spider silk formation via opposite effects on the terminal domains. PLoS Biol. 12, e1001921 (2014).
Otikovs, M. et al. Degree of biomimicry of artificial spider silk spinning assessed by NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 56, 12571–12575 (2017).
Strickland, M., Tudorica, V., Řezáč, M., Thomas, N. R. & Goodacre, S. L. Conservation of a pH-sensitive structure in the C-terminal region of spider silk extends across the entire silk gene family. Heredity 120, 574–580 (2018).
Rat, C., Heiby, J. C., Bunz, J. P. & Neuweiler, H. Two-step self-assembly of a spider silk molecular clamp. Nat. Commun. 9, 4779 (2018).
Simmons, A., Ray, E. & Jelinski, L. W. Solid-state C-13 NMR of nephila-clavipes dragline silk establishes structure and identity of crystalline regions. Macromolecules 27, 5235–5237 (1994).
Boulet-Audet, M., Vollrath, F. & Holland, C. Identification and classification of silks using infrared spectroscopy. J. Exp. Biol. 218, 3138–3149 (2015).
Lefèvre, T., Paquet-Mercier, F., Rioux-Dubé, J. F. & Pézolet, M. Review structure of silk by Raman spectromicroscopy: from the spinning glands to the fibers. Biopolymers 97, 322–336 (2012).
Riekel, C., Burghammer, M., Dane, T. G., Ferrero, C. & Rosenthal, M. Nanoscale structural features in major ampullate spider silk. Biomacromolecules 18, 231–241 (2017).
Bashusqeh, S. M. & Pugno, N. M. Development of mechanically-consistent coarse-grained molecular dynamics model: case study of mechanics of spider silk. Sci. Rep. 13, 19316 (2023).
Huang, W. et al. Synergistic integration of experimental and simulation approaches for the de novo design of silk-based materials. Acc. Chem. Res. 50, 866–876 (2017).
Asakura, T. et al. Recombinant spider silk fiber with high dimensional stability in water and its NMR characterization. Molecules 27, 8479 (2022).
Loquet, A. et al. 3D structure determination of amyloid fibrils using solid-state NMR spectroscopy. Methods 138-139, 26–38 (2018).
Holzwarth, G. & Doty, P. The ultraviolet circular dichroism of polypeptides. J. Am. Chem. Soc. 87, 218–228 (1965).
Rat, C., Heindl, C. & Neuweiler, H. Domain swap facilitates structural transitions of spider silk protein C-terminal domains. Protein Sci. 32, e4783 (2023).
Ittah, S., Cohen, S., Garty, S., Cohn, D. & Gat, U. An essential role for the C-terminal domain of a dragline spider silk protein in directing fiber formation. Biomacromolecules 7, 1790–1795 (2006).
Kvick, M. et al. Cyclic expansion/compression of the air-liquid interface as a simple method to produce silk fibers. Macromol. Biosci. 21, e2000227 (2021).
Wilson, K., & Walker, J. Principles and Techniques of Biochemistry and Molecular Biology, 6th edition (Cambridge University Press, 2005).
Haris, P. I. Infrared spectroscopy of protein structure. in Encyclopedia of Biophysics (European Biophysical Societies Association, 2012)
Goormaghtigh, E., Cabiaux, V. & Ruysschaert, J. M. Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. III secondary structures. Subcell. Biochem. 23, 405–450 (1994).
Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta 1767, 1073–1101 (2007).
De Meutter, J. & Goormaghtigh, E. Amino acid side chain contribution to protein FTIR spectra: impact on secondary structure evaluation. Eur. Biophys. J. 50, 641–651 (2021).
Celej, M. S. et al. Toxic prefibrillar alpha-synuclein amyloid oligomers adopt a distinctive antiparallel beta-sheet structure. Biochem. J. 443, 719–726 (2012).
Guzenko, D., Chernyatina, A. A., & Strelkov, S. Fibrous proteins: structures and mechanisms. in Sub-Cellular Biochemistry Vol. 82 (Springer, 2017).
Riekel, C. et al. Aspects of X-ray diffraction on single spider fibers. Int. J. Biol. Macromol. 24, 179–186 (1999).
Jenkins, J. E. et al. Characterizing the secondary protein structure of black widow dragline silk using solid-state NMR and X-ray diffraction. Biomacromolecules 14, 3472–3483 (2013).
Xu, D. et al. Protein secondary structure of Green Lynx spider dragline silk investigated by solid-state NMR and X-ray diffraction. Int. J. Biol. Macromol. 81, 171–179 (2015).
Sampath, S. et al. X-ray diffraction study of nanocrystalline and amorphous structure within major and minor ampullate dragline spider silks. Soft Matter 8, 6713–6722 (2012).
Marsh, R. E., Corey, R. B. & Pauling, L. An investigation of the structure of silk fibroin. Biochim. Biophys. Acta 16, 1–34 (1955).
Arnott, S., Dover, S. D. & Elliott, A. Structure of β-poly-l-alanine: Refined atomic co-ordinates for an anti-parallel beta-pleated sheet. J. Mol. Biol. 30, 201–208 (1967).
Geddes, A. J., Parker, K. D., Atkins, E. D. T. & Beighton, E. “Cross-β” conformation in proteins. J. Mol. Biol. 32, 343–358 (1968).
Sunde, M. et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 729–739 (1997).
Langford, J. I. X-ray diffraction procedures for polycrystalline and amorphous materials by H. P. Klug and L. E. Alexander. J. Appl. Crystallogr. 8, 573–574 (1975).
Grubb, D. T. & Jelinski, L. W. Fiber morphology of spider silk: the effects of tensile deformation. Macromolecules 30, 2860–2867 (1997).
Creager, M. S. et al. Solid-state NMR comparison of various spiders’ dragline silk fiber. Biomacromolecules 11, 2039–2043 (2010).
Wishart, D. S. Interpreting protein chemical shift data. Prog. Nucl. Magn. Reson. Spectrosc. 58, 62–87 (2011).
Asakura, T. Structure and dynamics of spider silk studied with solid-state nuclear magnetic resonance and molecular dynamics simulation. Molecules 25, 2634 (2020).
Addison, B. et al. Spider prey-wrapping silk is an alpha-helical coiled-coil/beta-sheet hybrid nanofiber. Chem. Commun. 54, 10746–10749 (2018).
Holland, G. P., Creager, M. S., Jenkins, J. E., Lewis, R. V. & Yarger, J. L. Determining secondary structure in spider dragline silk by carbon-carbon correlation solid-state NMR spectroscopy. J. Am. Chem. Soc. 130, 9871–9877 (2008).
Asakura, T., Yamane, T., Nakazawa, Y., Kameda, T. & Ando, K. Structure of Bombyx mori silk fibroin before spinning in solid state studied with wide angle x-ray scattering and C-13 cross-polarization/magic angle spinning NMR. Biopolymers 58, 521–525 (2001).
<a data-track="click" rel="nofollow noopener" data-track-label="10.1002/1097-0282(20010415)58:53.0.CO;2-T” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1097-0282%2820010415%2958%3A5%3C521%3A%3AAID-BIP1027%3E3.0.CO%3B2-T” aria-label=”Article reference 57″ data-doi=”10.1002/1097-0282(20010415)58:53.0.CO;2-T”>Article
CAS
PubMed
Google Scholar
Lewandowski, J. R., De Paëpe, G. & Griffin, R. G. Proton assisted insensitive nuclei cross polarization. J. Am. Chem. Soc. 129, 728–729 (2007).
Goldschmidt, L., Teng, P. K., Riek, R. & Eisenberg, D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc. Natl Acad. Sci. USA 107, 3487–3492 (2010).
Fernandez-Escamilla, A. M., Rousseau, F., Schymkowitz, J. & Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol. 22, 1302–1306 (2004).
Li, S. C., Goto, N. K., Williams, K. A. & Deber, C. M. Alpha-Helical, but not beta-sheet, propensity of proline is determined by peptide environment. Proc. Natl Acad. Sci. USA 93, 6676–6681 (1996).
Greenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1, 2876–2890 (2006).
Almeida, A. M., Li, R. & Gellman, S. H. Parallel β-sheet secondary structure is stabilized and terminated by interstrand disulfide cross-linking. J. Am. Chem. Soc. 134, 75–78 (2012).
Xu, D., Guo, C. & Holland, G. P. Probing the impact of acidification on spider silk assembly kinetics. Biomacromolecules 16, 2072–2079 (2015).
Li, X. et al. C-terminal domains of spider silk proteins having divergent structures but conserved functional roles. Biomacromolecules 23, 1643–1651 (2022).
Dicko, C., Kenney, J. M., Knight, D. & Vollrath, F. Transition to a beta-sheet-rich structure in spidroin in vitro: the effects of pH and cations. Biochemistry 43, 14080–14087 (2004).
Landreh, M. et al. A pH-dependent dimer lock in spider silk protein. J. Mol. Biol. 404, 328–336 (2010).
Gauthier, M., Leclerc, J., Lefèvre, T., Gagné, S. M. & Auger, M. Effect of pH on the structure of the recombinant C-terminal domain of Nephila clavipes dragline silk protein. Biomacromolecules 15, 4447–4454 (2014).
Hidaka, Y. et al. Fiber formation of a synthetic spider peptide derived from Nephila clavata. Biopolymers 96, 222–227 (2011).
Kenney, J. M., Knight, D., Wise, M. J. & Vollrath, F. Amyloidogenic nature of spider silk. Eur. J. Biochem. 269, 4159–4163 (2002).
Nilebäck, L. et al. Interfacial behavior of recombinant spider silk protein parts reveals cues on the silk assembly mechanism. Langmuir 34, 11795–11805 (2018).
Baldassarre, M., Li, C. G., Eremina, N., Goormaghtigh, E. & Barth, A. Simultaneous fitting of absorption spectra and their second derivatives for an improved analysis of protein infrared spectra. Molecules 20, 12599–12622 (2015).
Origin(Pro). OriginLab Corporation, Northampton, MA, USA. (2021).
Riekel, C. B., M Davies, R., Gebhardt, R. & Popov, D. In Applications of Synchrotron Light to Non-Crystalline Diffraction in Materials and Life Sciences (eds García-Gutiérrez, M., Nogales, A., Gómez, M., Ezquerra, T. A.) (Springer, Heidelberg, 2008).
Labiche, J. C. et al. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis. Rev. Sci. Instrum. 78, 091301 (2007).
Hammersley, A. In www.esrf.fr/computing/scientific/FIT2D/; ESRF: Grenoble, (2009).
Fung, B. M., Khitrin, A. K. & Ermolaev, K. An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97–101 (2000).
Takegoshi, K., Nakamura, S. & Terao, T. 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem. Phys. Lett. 344, 631–637 (2001).
Schaefer, J., Mckay, R. A. & Stejskal, E. O. Double-cross-polarization NMR of solids. J. Magn. Reson. 34, 443–447 (1979).
Morcombe, C. R. & Zilm, K. W. Chemical shift referencing in MAS solid state NMR. J. Magn. Reson. 162, 479–486 (2003).
Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: Development of a software pipeline. Proteins Struct. Funct. Bioinforma. 59, 687–696 (2005).
Micsonai, A. et al. BeStSel: web server for secondary structure and fold prediction for protein CD spectroscopy. Nucleic Acids Res. 50, W90–W98 (2022).
Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016).
Biegert, A. & Söding, J. Sequence context-specific profiles for homology searching. Proc. Natl Acad. Sci. USA 106, 3770–3775 (2009).
Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2015).
Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41467-024-49111-5