Structural conversion of the spidroin C-terminal domain during assembly of spider silk fibers – Nature Communications

  • Gosline, J. M., Guerette, P. A., Ortlepp, C. S. & Savage, K. N. The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295–3303 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vollrath, F., Barth, P., Basedow, A., Engström, W. & List, H. Local tolerance to spider silks and protein polymers in vivo. Vivo 16, 229–234 (2002).

    CAS 

    Google Scholar
     

  • Holland, C., Numata, K., Rnjak-Kovacina, J. & Seib, F. P. The biomedical use of silk: past, present, future. Adv. Healthc. Mater. 8, e1800465 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kiseleva, A. P., Krivoshapkin, P. V. & Krivoshapkina, E. F. Recent advances in development of functional spider silk-based hybrid materials. Front Chem. 8, 554 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Askarieh, G. et al. Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature 465, 236–U125 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stark, M. et al. Macroscopic fibers self-assembled from recombinant miniature spider silk proteins. Biomacromolecules 8, 1695–1701 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hedhammar, M. et al. Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: implications for fiber formation. Biochemistry 47, 3407–3417 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, W., Askarieh, G., Shkumatov, A., Hedhammar, M. & Knight, S. D. Structure of the N-terminal domain of Euprosthenops australis dragline silk suggests that conversion of spidroin dope to spider silk involves a conserved asymmetric dimer intermediate. Acta Crystallogr D. Struct. Biol. 75, 618–627 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lazaris, A. et al. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295, 472–476 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Winkler, S. et al. Designing recombinant spider silk proteins to control assembly. Int. J. Biol. Macromol. 24, 265–270 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramezaniaghdam, M., Nahdi, N. D. & Reski, R. Recombinant spider silk: promises and bottlenecks. Front Bioeng. Biotechnol. 10, 835637 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersson, M. et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat. Chem. Biol. 13, 262–264 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liivak, O., Blye, A., Shah, N. & Jelinski, L. W. A microfabricated wet-spinning apparatus to spin fibers of silk proteins. structure−property correlations. Macromolecules 31, 2947–2951 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stephens, J. S. et al. Effects of electrospinning and solution casting protocols on the secondary structure of a genetically engineered dragline spider silk analogue investigated via Fourier transform Raman spectroscopy. Biomacromolecules 6, 1405–1413 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greiner, A. & Wendorff, J. H. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. Engl. 46, 5670–5703 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hedhammar, M. et al. Sterilized recombinant spider silk fibers of low pyrogenicity. Biomacromolecules 11, 953–959 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hagn, F. et al. A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465, 239–U131 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sponner, A., Unger, E., Grosse, F. & Weisshart, K. Conserved C-termini of spidroins are secreted by the major ampullate glands and retained in the silk thread. Biomacromolecules 5, 840–845 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andersson, M. et al. Carbonic anhydrase generates CO2 and H+ that drive spider silk formation via opposite effects on the terminal domains. PLoS Biol. 12, e1001921 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otikovs, M. et al. Degree of biomimicry of artificial spider silk spinning assessed by NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 56, 12571–12575 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strickland, M., Tudorica, V., Řezáč, M., Thomas, N. R. & Goodacre, S. L. Conservation of a pH-sensitive structure in the C-terminal region of spider silk extends across the entire silk gene family. Heredity 120, 574–580 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rat, C., Heiby, J. C., Bunz, J. P. & Neuweiler, H. Two-step self-assembly of a spider silk molecular clamp. Nat. Commun. 9, 4779 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simmons, A., Ray, E. & Jelinski, L. W. Solid-state C-13 NMR of nephila-clavipes dragline silk establishes structure and identity of crystalline regions. Macromolecules 27, 5235–5237 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Boulet-Audet, M., Vollrath, F. & Holland, C. Identification and classification of silks using infrared spectroscopy. J. Exp. Biol. 218, 3138–3149 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lefèvre, T., Paquet-Mercier, F., Rioux-Dubé, J. F. & Pézolet, M. Review structure of silk by Raman spectromicroscopy: from the spinning glands to the fibers. Biopolymers 97, 322–336 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Riekel, C., Burghammer, M., Dane, T. G., Ferrero, C. & Rosenthal, M. Nanoscale structural features in major ampullate spider silk. Biomacromolecules 18, 231–241 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bashusqeh, S. M. & Pugno, N. M. Development of mechanically-consistent coarse-grained molecular dynamics model: case study of mechanics of spider silk. Sci. Rep. 13, 19316 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Huang, W. et al. Synergistic integration of experimental and simulation approaches for the de novo design of silk-based materials. Acc. Chem. Res. 50, 866–876 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asakura, T. et al. Recombinant spider silk fiber with high dimensional stability in water and its NMR characterization. Molecules 27, 8479 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loquet, A. et al. 3D structure determination of amyloid fibrils using solid-state NMR spectroscopy. Methods 138-139, 26–38 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holzwarth, G. & Doty, P. The ultraviolet circular dichroism of polypeptides. J. Am. Chem. Soc. 87, 218–228 (1965).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rat, C., Heindl, C. & Neuweiler, H. Domain swap facilitates structural transitions of spider silk protein C-terminal domains. Protein Sci. 32, e4783 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ittah, S., Cohen, S., Garty, S., Cohn, D. & Gat, U. An essential role for the C-terminal domain of a dragline spider silk protein in directing fiber formation. Biomacromolecules 7, 1790–1795 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kvick, M. et al. Cyclic expansion/compression of the air-liquid interface as a simple method to produce silk fibers. Macromol. Biosci. 21, e2000227 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wilson, K., & Walker, J. Principles and Techniques of Biochemistry and Molecular Biology, 6th edition (Cambridge University Press, 2005).

  • Haris, P. I. Infrared spectroscopy of protein structure. in Encyclopedia of Biophysics (European Biophysical Societies Association, 2012)

  • Goormaghtigh, E., Cabiaux, V. & Ruysschaert, J. M. Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. III secondary structures. Subcell. Biochem. 23, 405–450 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta 1767, 1073–1101 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Meutter, J. & Goormaghtigh, E. Amino acid side chain contribution to protein FTIR spectra: impact on secondary structure evaluation. Eur. Biophys. J. 50, 641–651 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Celej, M. S. et al. Toxic prefibrillar alpha-synuclein amyloid oligomers adopt a distinctive antiparallel beta-sheet structure. Biochem. J. 443, 719–726 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guzenko, D., Chernyatina, A. A., & Strelkov, S. Fibrous proteins: structures and mechanisms. in Sub-Cellular Biochemistry Vol. 82 (Springer, 2017).

  • Riekel, C. et al. Aspects of X-ray diffraction on single spider fibers. Int. J. Biol. Macromol. 24, 179–186 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jenkins, J. E. et al. Characterizing the secondary protein structure of black widow dragline silk using solid-state NMR and X-ray diffraction. Biomacromolecules 14, 3472–3483 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, D. et al. Protein secondary structure of Green Lynx spider dragline silk investigated by solid-state NMR and X-ray diffraction. Int. J. Biol. Macromol. 81, 171–179 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sampath, S. et al. X-ray diffraction study of nanocrystalline and amorphous structure within major and minor ampullate dragline spider silks. Soft Matter 8, 6713–6722 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marsh, R. E., Corey, R. B. & Pauling, L. An investigation of the structure of silk fibroin. Biochim. Biophys. Acta 16, 1–34 (1955).

  • Arnott, S., Dover, S. D. & Elliott, A. Structure of β-poly-l-alanine: Refined atomic co-ordinates for an anti-parallel beta-pleated sheet. J. Mol. Biol. 30, 201–208 (1967).

  • Geddes, A. J., Parker, K. D., Atkins, E. D. T. & Beighton, E. “Cross-β” conformation in proteins. J. Mol. Biol. 32, 343–358 (1968).

  • Sunde, M. et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 729–739 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langford, J. I. X-ray diffraction procedures for polycrystalline and amorphous materials by H. P. Klug and L. E. Alexander. J. Appl. Crystallogr. 8, 573–574 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Grubb, D. T. & Jelinski, L. W. Fiber morphology of spider silk:  the effects of tensile deformation. Macromolecules 30, 2860–2867 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Creager, M. S. et al. Solid-state NMR comparison of various spiders’ dragline silk fiber. Biomacromolecules 11, 2039–2043 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wishart, D. S. Interpreting protein chemical shift data. Prog. Nucl. Magn. Reson. Spectrosc. 58, 62–87 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asakura, T. Structure and dynamics of spider silk studied with solid-state nuclear magnetic resonance and molecular dynamics simulation. Molecules 25, 2634 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Addison, B. et al. Spider prey-wrapping silk is an alpha-helical coiled-coil/beta-sheet hybrid nanofiber. Chem. Commun. 54, 10746–10749 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Holland, G. P., Creager, M. S., Jenkins, J. E., Lewis, R. V. & Yarger, J. L. Determining secondary structure in spider dragline silk by carbon-carbon correlation solid-state NMR spectroscopy. J. Am. Chem. Soc. 130, 9871–9877 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asakura, T., Yamane, T., Nakazawa, Y., Kameda, T. & Ando, K. Structure of Bombyx mori silk fibroin before spinning in solid state studied with wide angle x-ray scattering and C-13 cross-polarization/magic angle spinning NMR. Biopolymers 58, 521–525 (2001).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/1097-0282(20010415)58:53.0.CO;2-T” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1097-0282%2820010415%2958%3A5%3C521%3A%3AAID-BIP1027%3E3.0.CO%3B2-T” aria-label=”Article reference 57″ data-doi=”10.1002/1097-0282(20010415)58:53.0.CO;2-T”>Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewandowski, J. R., De Paëpe, G. & Griffin, R. G. Proton assisted insensitive nuclei cross polarization. J. Am. Chem. Soc. 129, 728–729 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldschmidt, L., Teng, P. K., Riek, R. & Eisenberg, D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc. Natl Acad. Sci. USA 107, 3487–3492 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandez-Escamilla, A. M., Rousseau, F., Schymkowitz, J. & Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat. Biotechnol. 22, 1302–1306 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, S. C., Goto, N. K., Williams, K. A. & Deber, C. M. Alpha-Helical, but not beta-sheet, propensity of proline is determined by peptide environment. Proc. Natl Acad. Sci. USA 93, 6676–6681 (1996).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1, 2876–2890 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almeida, A. M., Li, R. & Gellman, S. H. Parallel β-sheet secondary structure is stabilized and terminated by interstrand disulfide cross-linking. J. Am. Chem. Soc. 134, 75–78 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, D., Guo, C. & Holland, G. P. Probing the impact of acidification on spider silk assembly kinetics. Biomacromolecules 16, 2072–2079 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. C-terminal domains of spider silk proteins having divergent structures but conserved functional roles. Biomacromolecules 23, 1643–1651 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dicko, C., Kenney, J. M., Knight, D. & Vollrath, F. Transition to a beta-sheet-rich structure in spidroin in vitro: the effects of pH and cations. Biochemistry 43, 14080–14087 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landreh, M. et al. A pH-dependent dimer lock in spider silk protein. J. Mol. Biol. 404, 328–336 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gauthier, M., Leclerc, J., Lefèvre, T., Gagné, S. M. & Auger, M. Effect of pH on the structure of the recombinant C-terminal domain of Nephila clavipes dragline silk protein. Biomacromolecules 15, 4447–4454 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hidaka, Y. et al. Fiber formation of a synthetic spider peptide derived from Nephila clavata. Biopolymers 96, 222–227 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kenney, J. M., Knight, D., Wise, M. J. & Vollrath, F. Amyloidogenic nature of spider silk. Eur. J. Biochem. 269, 4159–4163 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nilebäck, L. et al. Interfacial behavior of recombinant spider silk protein parts reveals cues on the silk assembly mechanism. Langmuir 34, 11795–11805 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Baldassarre, M., Li, C. G., Eremina, N., Goormaghtigh, E. & Barth, A. Simultaneous fitting of absorption spectra and their second derivatives for an improved analysis of protein infrared spectra. Molecules 20, 12599–12622 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Origin(Pro). OriginLab Corporation, Northampton, MA, USA. (2021).

  • Riekel, C. B., M Davies, R., Gebhardt, R. & Popov, D. In Applications of Synchrotron Light to Non-Crystalline Diffraction in Materials and Life Sciences (eds García-Gutiérrez, M., Nogales, A., Gómez, M., Ezquerra, T. A.) (Springer, Heidelberg, 2008).

  • Labiche, J. C. et al. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis. Rev. Sci. Instrum. 78, 091301 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hammersley, A. In www.esrf.fr/computing/scientific/FIT2D/; ESRF: Grenoble, (2009).

  • Fung, B. M., Khitrin, A. K. & Ermolaev, K. An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97–101 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Takegoshi, K., Nakamura, S. & Terao, T. 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem. Phys. Lett. 344, 631–637 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schaefer, J., Mckay, R. A. & Stejskal, E. O. Double-cross-polarization NMR of solids. J. Magn. Reson. 34, 443–447 (1979).

    ADS 
    CAS 

    Google Scholar
     

  • Morcombe, C. R. & Zilm, K. W. Chemical shift referencing in MAS solid state NMR. J. Magn. Reson. 162, 479–486 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: Development of a software pipeline. Proteins Struct. Funct. Bioinforma. 59, 687–696 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Micsonai, A. et al. BeStSel: web server for secondary structure and fold prediction for protein CD spectroscopy. Nucleic Acids Res. 50, W90–W98 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashkenazy, H. et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biegert, A. & Söding, J. Sequence context-specific profiles for homology searching. Proc. Natl Acad. Sci. USA 106, 3770–3775 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar