Stroke-induced neuroplasticity in spiny mice in the absence of tissue regeneration

  • GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 459–480 (2019).

    Article 

    Google Scholar
     

  • Kim, J. et al. Global stroke statistics 2019. Int. J. Stroke 15, 819–838 (2020).

  • Candelario-Jalil, E. Injury and repair mechanisms in ischemic stroke: considerations for the development of novel neurotherapeutics. Curr. Opin. Investig. Drugs 10, 644–654 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Fonarow, G. C. et al. Timeliness of tissue-type plasminogen activator therapy in acute ischemic stroke: patient characteristics, hospital factors, and outcomes associated with door-to-needle times within 60 min. Circulation 123, 750–758 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dimyan, M. A. & Cohen, L. G. Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 7, 76–85 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casals, J. B. et al. The use of animal models for stroke research: a review. Comp. Med. 61, 305–313 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cekanaviciute, E. & Buckwalter, M. S. Astrocytes: integrative regulators of neuroinflammation in stroke and other neurological diseases. Neurotherapeutics 13, 685–701 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iadecola, C. & Anrather, J. The immunology of stroke: from mechanisms to translation. Nat. Med. 17, 796–808 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, R. et al. Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J. Cereb. Blood Flow. Metab. 24, 441–448 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. & Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parent, J. M., Vexler, Z. S., Gong, C., Derugin, N. & Ferriero, D. M. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann. Neurol. 52, 802–813 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Larochelle, J. et al. Receptor-interacting protein kinase 2 (RIPK2) profoundly contributes to post-stroke neuroinflammation and behavioral deficits with microglia as unique perpetrators. J. Neuroinflamm. 20, 221 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lavayen, B. P. et al. Neuroprotection by the cannabidiol aminoquinone VCE-004.8 in experimental ischemic stroke in mice. Neurochem. Int. 165, 105508 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, C. et al. Therapeutic benefits of adropin in aged mice after transient ischemic stroke via reduction of blood-brain barrier damage. Stroke 54, 234–244 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okuyama, S. et al. The arterial circle of Willis of the mouse helps to decipher secrets of cerebral vascular accidents in the human. Med. Hypotheses 63, 997–1009 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Johns, P. Stroke. in Clinical Neuroscience 115–128 (Elsevier, 2014). https://doi.org/10.1016/B978-0-443-10321-6.00010-2.

  • Zanier, E. R. et al. Six-month ischemic mice show sensorimotor and cognitive deficits associated with brain atrophy and axonal disorganization. CNS Neurosci. Ther. 19, 695–704 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blaschke, S. J. et al. Translating functional connectivity after stroke: functional magnetic resonance imaging detects comparable network changes in mice and humans. Stroke 52, 2948–2960 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Haughton, C. L., Gawriluk, T. R. & Seifert, A. W. The biology and husbandry of the african spiny mouse (Acomys cahirinus) and the research uses of a laboratory colony. J. Am. Assoc. Lab. Anim. Sci. 55, 9–17 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maden, M. & Varholick, J. A. Model systems for regeneration: the spiny mouse, Acomys cahirinus. Development 147, dev167718 (2020).

  • Seifert, A. W. et al. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 489, 561–565 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maden, M. & Brant, J. O. Insights into the regeneration of skin from Acomys, the spiny mouse. Exp. Dermatol. 28, 436–441 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Maden, M. Optimal skin regeneration after full thickness thermal burn injury in the spiny mouse, Acomys cahirinus. Burns 44, 1509–1520 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Maden, M. et al. Perfect chronic skeletal muscle regeneration in adult spiny mice, Acomys cahirinus. Sci. Rep. 8, 8920 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okamura, D. M. et al. Spiny mice activate unique transcriptional programs after severe kidney injury regenerating organ function without fibrosis. iScience 24, 103269 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matias Santos, D. et al. Ear wound regeneration in the African spiny mouse Acomys cahirinus. Regeneration 3, 52–61 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, T.-X., Harn, H. I.-C., Ou, K.-L., Lei, M. & Chuong, C.-M. Comparative regenerative biology of spiny (Acomys cahirinus) and laboratory (Mus musculus) mouse skin. Exp. Dermatol. 28, 442–449 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Streeter, K. A. et al. Molecular and histologic outcomes following spinal cord injury in spiny mice, Acomys cahirinus. J. Comp. Neurol. 528, 1535–1547 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nogueira-Rodrigues, J. et al. Rewired glycosylation activity promotes scarless regeneration and functional recovery in spiny mice after complete spinal cord transection. Dev. Cell 57, 440–450.e7 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi, Y. et al. Functional heart recovery in an adult mammal, the spiny mouse. Int. J. Cardiol. 338, 196–203 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Koopmans, T. et al. Ischemic tolerance and cardiac repair in the spiny mouse (Acomys). npj Regen. Med. 6, 78 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, H. et al. Adult spiny mice (Acomys) exhibit endogenous cardiac recovery in response to myocardial infarction. npj Regen. Med. 6, 74 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szczurkowski, A., Kuchinka, J., Nowak, E. & Kuder, T. Topography of arterial circle of the brain in Egyptian spiny mouse (Acomys cahirinus, Desmarest). Anat. Histol. Embryol. 36, 147–150 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaire, J. et al. Spiny mouse (Acomys): an emerging research organism for regenerative medicine with applications beyond the skin. npj Regen. Med. 6, 1 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fluri, F., Schuhmann, M. K. & Kleinschnitz, C. Animal models of ischemic stroke and their application in clinical research. Drug Des. Dev. Ther. 9, 3445–3454 (2015).

    CAS 

    Google Scholar
     

  • Mozaffarian, D. et al. Heart Disease and Stroke Statistics-2016 Update: a report from the american heart association. Circulation 133, e38–e360 (2016).

    PubMed 

    Google Scholar
     

  • Chollet, F. et al. The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann. Neurol. 29, 63–71 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weiller, C., Chollet, F., Friston, K. J., Wise, R. J. & Frackowiak, R. S. Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann. Neurol. 31, 463–472 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seitz, R. J. et al. Role of the premotor cortex in recovery from middle cerebral artery infarction. Arch. Neurol. 55, 1081–1088 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu. F. & McCullough, L. Middle cerebral artery occlusion model in rodents: methods and potential pitfalls. J. Biomed. Biotechnol. 2011, 464701 (2011).

  • Brant, J. O., Yoon, J. H., Polvadore, T., Barbazuk, W. B. & Maden, M. Cellular events during scar-free skin regeneration in the spiny mouse, Acomys. Wound Repair Regen. 24, 75–88 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 18, 225–242 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jurga, A. M., Paleczna, M. & Kuter, K. Z. Overview of general and discriminating markers of differential microglia phenotypes. Front. Cell. Neurosci. 14, 198 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thored, P. et al. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24, 739–747 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kernie, S. G. & Parent, J. M. Forebrain neurogenesis after focal Ischemic and traumatic brain injury. Neurobiol. Dis. 37, 267–274 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Ratnayake, U., Quinn, T., Daruwalla, K., Dickinson, H. & Walker, D. W. Understanding the behavioural phenotype of the precocial spiny mouse. Behav. Brain Res. 275, 62–71 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Birke, L. I. A. & Sadler, D. Patterns of exploratory behavior in the spiny mouse, Acomys cahirinus. Behav. Neural Biol. 45, 88–106 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Birke, L. I. A., D’Udine, B. & Emanuela Albonetti, M. Exploratory behavior of two species of murid rodents, Acomys cahirinus and Mus musculus: a comparative study. Behav. Neural Biol. 43, 143–161 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vitorino, M. et al. Coronal brain atlas in stereotaxic coordinates of the African spiny mouse, Acomys cahirinus. J. Comp. Neurol. 530, 2215–2237 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Atlas Thumbnails : Allen Brain Atlas: Mouse Brain. https://mouse.brain-map.org/experiment/thumbnails/100048576?image_type=atlas.

  • Ferris, C. F. et al. Studies on the Q175 Knock-in Model of Huntington’s Disease using functional imaging in awake mice: evidence of olfactory dysfunction. Front. Neurol. 5, 94 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seghier, M. L., Ramsden, S., Lim, L., Leff, A. P. & Price, C. J. Gradual lesion expansion and brain shrinkage years after stroke. Stroke 45, 877–879 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Tsurugizawa, T., Takahashi, Y. & Kato, F. Distinct effects of isoflurane on basal BOLD signals in tissue/vascular microstructures in rats. Sci. Rep. 6, 38977 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masamoto, K., Fukuda, M., Vazquez, A. & Kim, S.-G. Dose-dependent effect of isoflurane on neurovascular coupling in rat cerebral cortex. Eur. J. Neurosci. 30, 242–250 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frisén, J. Neurogenesis and gliogenesis in nervous system plasticity and repair. Annu. Rev. Cell Dev. Biol. 32, 127–141 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Maden, M., Serrano, N., Bermudez, M. & Sandoval, A. G. W. A profusion of neural stem cells in the brain of the spiny mouse, Acomys cahirinus. J. Anat. 238, 1191–1202 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sabin, K., Santos-Ferreira, T., Essig, J., Rudasill, S. & Echeverri, K. Dynamic membrane depolarization is an early regulator of ependymoglial cell response to spinal cord injury in axolotl. Dev. Biol. 408, 14–25 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hui, S. P., Monaghan, J. R., Voss, S. R. & Ghosh, S. Expression pattern of Nogo-A, MAG, and NgR in regenerating urodele spinal cord. Dev. Dyn. 242, 847–860 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zukor, K. A., Kent, D. T. & Odelberg, S. J. Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts. Neural Dev. 6, 1 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diaz Quiroz, J. F., Tsai, E., Coyle, M., Sehm, T. & Echeverri, K. Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: a cross-species comparison between salamander and rat. Dis. Model. Mech. 7, 601–611 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fawcett, J. W. & Asher, R. A. The glial scar and central nervous system repair. Brain Res. Bull. 49, 377–391 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cregg, J. M. et al. Functional regeneration beyond the glial scar. Exp. Neurol. 253, 197–207 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Adams, K. L. & Gallo, V. The diversity and disparity of the glial scar. Nat. Neurosci. 21, 9–15 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146–156 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hammond, M. D. et al. CCR2 + Ly6C(hi) inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. J. Neurosci. 34, 3901–3909 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shichita, T. et al. Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat. Med. 15, 946–950 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liesz, A. et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 15, 192–199 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zera, K. A. & Buckwalter, M. S. The local and peripheral immune responses to stroke: implications for therapeutic development. Neurotherapeutics 17, 414–435 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michór, P., Renardson, L., Li, S. & Boltze, J. Neurorestorative approaches for ischemic strokechallenges, opportunities, and recent advances. Neuroscience 550, 69–78 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Williamson, M. R. et al. Subventricular zone cytogenesis provides trophic support for neural repair in a mouse model of stroke. Nat. Commun. 14, 6341 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freitas-Andrade, M., Raman-Nair, J. & Lacoste, B. Structural and functional remodeling of the brain vasculature following stroke. Front. Physiol. 11, 948 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weber, R. et al. Early prediction of functional recovery after experimental stroke: functional magnetic resonance imaging, electrophysiology, and behavioral testing in rats. J. Neurosci. 28, 1022–1029 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sauter, A. et al. Recovery of function in cytoprotected cerebral cortex in rat stroke model assessed by functional MRI. Magn. Reson. Med. 47, 759–765 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Dijkhuizen, R. M. et al. Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proc. Natl Acad. Sci. USA 98, 12766–12771 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crofts, A., Kelly, M. E. & Gibson, C. L. Imaging functional recovery following ischemic stroke: clinical and preclinical fMRI studies. J. Neuroimaging 30, 5–14 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • van Meer, M. P. A. et al. Extent of bilateral neuronal network reorganization and functional recovery in relation to stroke severity. J. Neurosci. 32, 4495–4507 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shim, W. H., Suh, J.-Y., Kim, J. K., Jeong, J. & Kim, Y. R. Enhanced thalamic functional connectivity with no fMRI responses to affected forelimb stimulation in stroke-recovered rats. Front. Neural Circuits 10, 113 (2016).

    PubMed 

    Google Scholar
     

  • Weber, R., Ramos-Cabrer, P., Wiedermann, D., van Camp, N. & Hoehn, M. A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. Neuroimage 29, 1303–1310 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Bentley, P. et al. Lesion locations influencing baseline severity and early recovery in ischaemic stroke. Eur. J. Neurol. 21, 1226–1232 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Almeida, S. R. M. et al. Brain connectivity and functional recovery in patients with ischemic stroke. J. Neuroimaging 27, 65–70 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Manganotti, P. et al. Motor disinhibition in affected and unaffected hemisphere in the early period of recovery after stroke. Clin. Neurophysiol. 113, 936–943 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nelles, G. et al. Evolution of functional reorganization in hemiplegic stroke: a serial positron emission tomographic activation study. Ann. Neurol. 46, 901–909 (1999).

  • Nelles, G. et al. Reorganization of sensory and motor systems in hemiplegic stroke patients. A positron emission tomography study. Stroke 30, 1510–1516 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cramer, S. C. et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28, 2518–2527 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weiller, C., Ramsay, S. C., Wise, R. J., Friston, K. J. & Frackowiak, R. S. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann. Neurol. 33, 181–189 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ward, N. S., Brown, M. M., Thompson, A. J. & Frackowiak, R. S. J. Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain 126, 1430–1448 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • James, G. A. et al. Changes in resting state effective connectivity in the motor network following rehabilitation of upper extremity poststroke paresis. Top. Stroke Rehabil. 16, 270–281 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dodd, K. C., Nair, V. A. & Prabhakaran, V. Role of the contralesional vs. ipsilesional hemisphere in stroke recovery. Front. Hum. Neurosci. 11, 469 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L. et al. Targeted BRD4 protein degradation by dBET1 ameliorates acute ischemic brain injury and improves functional outcomes associated with reduced neuroinflammation and oxidative stress and preservation of blood-brain barrier integrity. J. Neuroinflamm. 19, 168 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yushkevich, P. A., Yang, G. & Gerig, G. ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2016, 3342–3345 (2016).

    PubMed 

    Google Scholar
     

  • Sakthivel, R. et al. Fixed time-point analysis reveals repetitive mild traumatic brain injury effects on resting state functional magnetic resonance imaging connectivity and neuro-spatial protein profiles. J. Neurotrauma 40, 2037–2049 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersson, J. L. R., Skare, S. & Ashburner, J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20, 870–888 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Cox, R. W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, S. M. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, S. M. et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487–1505 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54, 2033–2044 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Grandjean, J., Zerbi, V., Balsters, J. H., Wenderoth, N. & Rudin, M. Structural basis of large-scale functional connectivity in the mouse. J. Neurosci. 37, 8092–8101 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chou, N., Wu, J., Bai Bingren, J., Qiu, A. & Chuang, K.-H. Robust automatic rodent brain extraction using 3-D pulse-coupled neural networks (PCNN). IEEE Trans. Image Process. 20, 2554–2564 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Kenkel, W. M. et al. Functional magnetic resonance imaging in awake transgenic fragile X rats: evidence of dysregulation in reward processing in the mesolimbic/habenular neural circuit. Transl. Psychiatry 6, e763 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pompilus, M., Colon-Perez, L. M., Grudny, M. M. & Febo, M. Contextual experience modifies functional connectome indices of topological strength and efficiency. Sci. Rep. 10, 19843 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Z. et al. Compensatory functional connectome changes in a rat model of traumatic brain injury. Brain Commun. 3, fcab244 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, N. et al. Whole mouse brain structural connectomics using magnetic resonance histology. Brain Struct. Funct. 223, 4323–4335 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muñoz, A., Blu, T. & Unser, M. Least-squares image resizing using finite differences. IEEE Trans. Image Process. 10, 1365–1378 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeMars, K. M., Yang, C. & Candelario-Jalil, E. Neuroprotective effects of targeting BET proteins for degradation with dBET1 in aged mice subjected to ischemic stroke. Neurochem. Int. 127, 94–102 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haahr, M. RANDOM.ORG: True Random Integer Generator – List Randomizer. https://www.random.org/lists/.

  • Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).

    Article 

    Google Scholar
     

  • Koo, T. K. & Li, M. Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15, 155–163 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar