Small-molecule-mediated control of the anti-tumour activity and off-tumour toxicity of a supramolecular bispecific T cell engager – Nature Biomedical Engineering

  • Huehls, A. M., Coupet, T. A. & Sentman, C. L. Bispecific T‐cell engagers for cancer immunotherapy. Immunol. Cell Biol. 93, 290–296 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rader, C. Bispecific antibodies in cancer immunotherapy. Curr. Opin. Biotechnol. 65, 9–16 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Weidanz, J. Targeting cancer with bispecific antibodies. Science 371, 996–997 (2021).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • de Miguel, M., Umana, P., de Morais, A. L. G., Moreno, V. & Calvo, E. T-cell-engaging therapy for solid tumors. Clin. Cancer Res. 27, 1595–1603 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Tian, Z., Liu, M., Zhang, Y. & Wang, X. Bispecific T cell engagers: an emerging therapy for management of hematologic malignancies. J. Hematol. Oncol. 14, 1–18 (2021).

    Article 

    Google Scholar
     

  • Smits, N. C. & Sentman, C. L. Bispecific T-cell engagers (BiTEs) as treatment of B-cell lymphoma. J. Clin. Oncol. 34, 1131 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Krishnamurthy, A. & Jimeno, A. Bispecific antibodies for cancer therapy: a review. Pharmacol. Ther. 185, 122–134 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Duell, J. et al. Bispecific antibodies in the treatment of hematologic malignancies. Clin. Pharmacol. Ther. 106, 781–791 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Przepiorka, D. et al. FDA approval: blinatumomab. Clin. Cancer Res. 21, 4035–4039 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kantarjian, H. et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med. 376, 836–847 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Labrijn, A. F., Janmaat, M. L., Reichert, J. M. & Parren, P. W. Bispecific antibodies: a mechanistic review of the pipeline. Nat. Rev. Drug Discov. 18, 585–608 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • von Stackelberg, A. et al. Phase I/phase II study of blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. J. Clin. Oncol. 34, 4381–4389 (2016).

    Article 

    Google Scholar
     

  • Topp, M. S. et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 16, 57–66 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fadul, C. et al. A phase I study targeting newly diagnosed glioblastoma with anti-CD3× anti-EGFR bispecific antibody armed T cells (EGFR BATs) in combination with radiation and temozolomide. Brain Tumor Res. Treat. 10, S193 (2022).


    Google Scholar
     

  • Fiedler, W. et al. Phase I safety and pharmacology study of the EpCAM/CD3-bispecific BiTE antibody MT110 in patients with metastatic colorectal, gastric, or lung cancer. J. Clin. Oncol. 28, 2573–2573 (2010).

    Article 

    Google Scholar
     

  • Hutchings, M. et al. Glofitamab, a novel, bivalent CD20-targeting T-cell–engaging bispecific antibody, induces durable complete remissions in relapsed or refractory B-cell lymphoma: a phase I trial. J. Clin. Oncol. 39, 1959–1970 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Heitmann, J. S. et al. Protocol of a prospective, multicentre phase I study to evaluate the safety, tolerability and preliminary efficacy of the bispecific PSMAxCD3 antibody CC-1 in patients with castration-resistant prostate carcinoma. BMJ Open 10, e039639 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lum, L. G. et al. Clinical and immune responses to anti-CD3 x anti-EGFR bispecific antibody armed activated T cells (EGFR BATs) in pancreatic cancer patients. Oncoimmunology 9, 1773201 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lum, L. G. et al. Phase II clinical trial using anti-CD3× anti-HER2 bispecific antibody armed activated T cells (HER2 BATs) consolidation therapy for HER2 negative (0–2+) metastatic breast cancer. J. Immunother. Cancer 9, e002194 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van De Vyver, A. J., Marrer-Berger, E., Wang, K., Lehr, T. & Walz, A.-C. Cytokine release syndrome by T-cell-redirecting therapies: can we predict and modulate patient risk? Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-21-0470 (2021).

  • Frey, N. V. & Porter, D. L. Cytokine release syndrome with novel therapeutics for acute lymphoblastic leukemia. Hematol. Am. Soc. Hematol. Educ. Program 2016, 567–572 (2016).

    Article 

    Google Scholar
     

  • Stein, A. S. et al. Neurologic adverse events in patients with relapsed/refractory acute lymphoblastic leukemia treated with blinatumomab: management and mitigating factors. Ann. Hematol. 98, 159–167 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Parker, K. R. et al. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 183, 126–142. e117 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Goebeler, M.-E. & Bargou, R. C. T cell-engaging therapies—BiTEs and beyond. Nat. Rev. Clin. Oncol. 17, 418–434 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Gross, G. & Eshhar, Z. Therapeutic potential of T cell chimeric antigen receptors (CARs) in cancer treatment: counteracting off-tumor toxicities for safe CAR T cell therapy. Annu. Rev. Pharmacol. Toxicol. 56, 59–83 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kallioniemi, O.-P. et al. ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. Proc. Natl Acad. Sci. USA 89, 5321–5325 (1992).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Morris, E. C., Neelapu, S. S., Giavridis, T. & Sadelain, M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat. Rev. Immunol. 22, 85–96 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Suurs, F. V., Lub-de Hooge, M. N., de Vries, E. G. & de Groot, D. J. A. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol. Ther. 201, 103–119 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bai, Y., Luo, Q. & Liu, J. Protein self-assembly via supramolecular strategies. Chem. Soc. Rev. 45, 2756–2767 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sakamoto, S. & Kudo, K. Supramolecular control of split-GFP reassembly by conjugation of β-cyclodextrin and coumarin units. J. Am. Chem. Soc. 130, 9574–9582 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Friberg, G. & Reese, D. Blinatumomab (Blincyto): lessons learned from the bispecific T-cell engager (BiTE) in acute lymphocytic leukemia (ALL). Ann. Oncol. 28, 2009–2012 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hubsher, G., Haider, M. & Okun, M. Amantadine: the journey from fighting flu to treating Parkinson disease. Neurology 78, 1096–1099 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Schmid, D. et al. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat. Commun. 8, 1–12 (2017).

    Article 
    CAS 

    Google Scholar
     

  • McCall, M. J., Diril, H. & Meares, C. F. Simplified method for conjugating macrocyclic bifunctional chelating agents to antibodies via 2-iminothiolane. Bioconjug. Chem. 1, 222–226 (1990).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ding, Y.-F. et al. Host–guest interactions initiated supramolecular chitosan nanogels for selective intracellular drug delivery. ACS Appl. Mater. Interfaces 11, 28665–28670 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Estrada, E., Perdomo-López, I. & Torres-Labandeira, J. J. Combination of 2D-, 3D-connectivity and quantum chemical descriptors in QSPR. Complexation of α-and β-cyclodextrin with benzene derivatives. J. Chem. Inf. Comput. Sci. 41, 1561–1568 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, L. & Guo, Q.-X. Novel prediction for the driving force and guest orientation in the complexation of α-and β-cyclodextrin with benzene derivatives. J. Phys. Chem. B 103, 3461–3467 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, W., Kim, B., Rutka, J. T. & Chan, W. C. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Yuan, H. et al. Multivalent bi-specific nanobioconjugate engager for targeted cancer immunotherapy. Nat. Nanotechnol. 12, 763–769 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Selvin, P. R. The renaissance of fluorescence resonance energy transfer. Nat. Struct. Biol. 7, 730–734 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, B. et al. Site-specific PEGylation of interleukin-2 enhances immunosuppression via the sustained activation of regulatory T cells. Nat. Biomed. Eng. 5, 1288–1305 (2021).

  • Harris, J. M. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2, 214–221 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dreier, T. et al. T cell costimulus-independent and very efficacious inhibition of tumor growth in mice bearing subcutaneous or leukemic human B cell lymphoma xenografts by a CD19-/CD3-bispecific single-chain antibody construct. J. Immunol. 170, 4397–4402 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Aoki, F. Y. & Sitar, D. S. Clinical pharmacokinetics of amantadine hydrochloride. Clin. Pharmacokinet. 14, 35–51 (1988).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kim, C., Agasti, S. S., Zhu, Z., Isaacs, L. & Rotello, V. M. Recognition-mediated activation of therapeutic gold nanoparticles inside living cells. Nat. Chem. 2, 962–966 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tonga, G. Y. et al. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat. Chem. 7, 597–603 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tokumura, T. et al. Enhancement of bioavailability of cinnarizine from its β‐cyclodextrin complex on oral administration with dl‐phenylalanine as a competing agent. J. Pharm. Sci. 75, 391–394 (1986).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Braegelman, A. S. & Webber, M. J. Integrating stimuli-responsive properties in host–guest supramolecular drug delivery systems. Theranostics 9, 3017 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Castellarin, M. et al. A rational mouse model to detect on-target, off-tumor CAR T cell toxicity. JCI Insight 5, e136012 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, M. J. & Ahituv, N. in Pharmacogenomics (Innocenti, F. & van Schaik, R. H. N. eds) 279–289 (Springer, 2013).

  • Arteta, M. Y. et al. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc. Natl Acad. Sci. USA 115, E3351–E3360 (2018).

    CAS 

    Google Scholar
     

  • Zhang, Y., Sun, C., Wang, C., Jankovic, K. E. & Dong, Y. Lipids and lipid derivatives for RNA delivery. Chem. Rev. https://doi.org/10.1021/acs.chemrev.1c00244 (2021).

  • Min, Y. et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 12, 877–882 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhou, Q. et al. Mannose-derived carbon dots amplify microwave ablation-induced antitumor immune responses by capturing and transferring ‘danger signals’ to dendritic cells. ACS Nano 15, 2920–2932 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Norelli, M. et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 24, 739–748 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, F. et al. Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. J. Immunol. Methods 434, 1–8 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Melero, I., Castanon, E., Alvarez, M., Champiat, S. & Marabelle, A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat. Rev. Clin. Oncol. 18, 558–576 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Di, S. et al. Combined adjuvant of poly I: C improves antitumor effects of CAR-T cells. Front. Oncol. 9, 241 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar