Skin-inspired soft bioelectronic materials, devices and systems – Nature Reviews Bioengineering

  • Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016). This review article discusses material and device design in skin-like electronics to mimic the skin’s ability to sense and generate biomimetic signals.

    Article 

    Google Scholar
     

  • Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019).

    Article 

    Google Scholar
     

  • Kim, J., Campbell, A. S., De Ávila, B. E.-F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Article 

    Google Scholar
     

  • Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).

    Article 

    Google Scholar
     

  • Sunwoo, S.-H. et al. Advances in soft bioelectronics for brain research and clinical neuroengineering. Matter 3, 1923–1947 (2020).

    Article 

    Google Scholar
     

  • Ray, T. R. et al. Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019).

    Article 

    Google Scholar
     

  • Lin, M., Hu, H., Zhou, S. & Xu, S. Soft wearable devices for deep-tissue sensing. Nat. Rev. Mater. 7, 850–869 (2022).

    Article 

    Google Scholar
     

  • Lee, G. H. et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5, 149–165 (2020).

    Article 

    Google Scholar
     

  • Xu, S., Kim, J., Walter, J. R., Ghaffari, R. & Rogers, J. A. Translational gaps and opportunities for medical wearables in digital health. Sci. Transl Med. 14, eabn6036 (2022).

    Article 

    Google Scholar
     

  • Rivnay, J., Wang, H., Fenno, L., Deisseroth, K. & Malliaras, G. G. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 3, e1601649 (2017).

    Article 

    Google Scholar
     

  • Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

    Article 

    Google Scholar
     

  • Yang, J. C. et al. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 31, e1904765 (2019).

    Article 

    Google Scholar
     

  • Yao, K. et al. Encoding of tactile information in hand via skin-integrated wireless haptic interface. Nat. Mach. Intell. 4, 893–903 (2022).

    Article 

    Google Scholar
     

  • Luo, Y. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).

    Article 

    Google Scholar
     

  • Matsuhisa, N., Chen, X., Bao, Z. & Someya, T. Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 48, 2946–2966 (2019).

    Article 

    Google Scholar
     

  • Dai, Y., Hu, H., Wang, M., Xu, J. & Wang, S. Stretchable transistors and functional circuits for human-integrated electronics. Nat. Electron. 4, 17–29 (2021).

    Article 

    Google Scholar
     

  • Liu, Y., Pharr, M. & Salvatore, G. A. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614–9635 (2017).

    Article 

    Google Scholar
     

  • Zheng, Y., Zhang, S., Tok, J. B. H. & Bao, Z. Molecular design of stretchable polymer semiconductors: current progress and future directions. J. Am. Chem. Soc. 144, 4699–4715 (2022).

    Article 

    Google Scholar
     

  • Wang, G.-J. N., Gasperini, A. & Bao, Z. Stretchable polymer semiconductors for plastic electronics. Adv. Electron. Mater. 4, 1700429 (2018).

    Article 

    Google Scholar
     

  • Root, S. E., Savagatrup, S., Printz, A. D., Rodriquez, D. & Lipomi, D. J. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem. Rev. 117, 6467–6499 (2017). This article reviews stretchable organic semiconductors from molecular and morphological levels.

    Article 

    Google Scholar
     

  • Wang, S., Oh, J. Y., Xu, J., Tran, H. & Bao, Z. Skin-inspired electronics: an emerging paradigm. Acc. Chem. Res. 51, 1033–1045 (2018).

    Article 

    Google Scholar
     

  • Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    Article 

    Google Scholar
     

  • Tran, H. et al. Stretchable and fully degradable semiconductors for transient electronics. ACS Cent. Sci. 5, 1884–1891 (2019).

    Article 

    Google Scholar
     

  • Liu, Y. et al. Morphing electronics enable neuromodulation in growing tissue. Nat. Biotechnol. 38, 1031–1036 (2020).

    Article 

    Google Scholar
     

  • Rao, Y. L. et al. Stretchable self-healing polymeric dielectrics cross-linked through metal–ligand coordination. J. Am. Chem. Soc. 138, 6020–6027 (2016).

    Article 

    Google Scholar
     

  • Huang, Y. W. et al. High mobility preservation of near amorphous conjugated polymers in the stretched states enabled by biaxially-extended conjugated side-chain design. Chem. Mater. 32, 7370–7382 (2020).

    Article 

    Google Scholar
     

  • Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    Article 

    Google Scholar
     

  • Xu, J. et al. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat. Mater. 18, 594–601 (2019).

    Article 

    Google Scholar
     

  • Zheng, Y. et al. A molecular design approach towards elastic and multifunctional polymer electronics. Nat. Commun. 12, 5701 (2021).

    Article 

    Google Scholar
     

  • Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018). This article is the first demonstration of intrinsically stretchable organic transistor arrays.

    Article 

    Google Scholar
     

  • Jiang, Y. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411–1417 (2022).

    Article 

    Google Scholar
     

  • Peña-Alcántara, A. et al. Effect of molecular weight on the morphology of a polymer semiconductor–thermoplastic elastomer blend. Adv. Electron. Mater. 9, 2201055 (2023).

    Article 

    Google Scholar
     

  • Nikzad, S. et al. Inducing molecular aggregation of polymer semiconductors in a secondary insulating polymer matrix to enhance charge transport. Chem. Mater. 32, 897–905 (2020).

    Article 

    Google Scholar
     

  • Liu, K., Tran, H., Feig, V. R. & Bao, Z. Biodegradable and stretchable polymeric materials for transient electronic devices. MRS Bull. 45, 96–102 (2020).

    Article 

    Google Scholar
     

  • Li, N. et al. Bioadhesive polymer semiconductors and transistors for intimate biointerfaces. Science 381, 686–693 (2023).

    Article 

    Google Scholar
     

  • Xue, Z., Song, H., Rogers, J. A., Zhang, Y. & Huang, Y. Mechanically-guided structural designs in stretchable inorganic electronics. Adv. Mater. 32, 1902254 (2020).

    Article 

    Google Scholar
     

  • Rafeedi, T. & Lipomi, D. J. Multiple pathways to stretchable electronics. Science 378, 1174–1175 (2022).

    Article 

    Google Scholar
     

  • Jang, K. I. et al. Self-assembled three dimensional network designs for soft electronics. Nat. Commun. 8, 15894 (2017).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. A mechanically driven form of kirigami as a route to 3D mesostructures in micro/nanomembranes. Proc. Natl Acad. Sci. USA 112, 11757–11764 (2015).

    Article 

    Google Scholar
     

  • Cho, K. W. et al. Soft bioelectronics based on nanomaterials. Chem. Rev. 122, 5068–5143 (2022).

    Article 

    Google Scholar
     

  • Li, J. et al. Stretchable piezoelectric biocrystal thin films. Nat. Commun. 14, 6562 (2023).

    Article 

    Google Scholar
     

  • Tang, X., He, Y. & Liu, J. Soft bioelectronics for cardiac interfaces. Biophys. Rev. 3, 011301 (2022).

    Article 

    Google Scholar
     

  • Su, Y. et al. In-plane deformation mechanics for highly stretchable electronics. Adv. Mater. 29, 1604989 (2017).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter 9, 8062–8070 (2013).

    Article 

    Google Scholar
     

  • Baker, L. B. Physiology of sweat gland function: the roles of sweating and sweat composition in human health. Temperature 6, 211–259 (2019).

    Article 

    Google Scholar
     

  • Yu, Y., Prassas, I., Muytjens, C. M. J. & Diamandis, E. P. Proteomic and peptidomic analysis of human sweat with emphasis on proteolysis. J. Proteom. 155, 40–48 (2017).

    Article 

    Google Scholar
     

  • Sana, F. et al. Wearable devices for ambulatory cardiac monitoring. J. Am. Coll. Cardiol. 75, 1582–1592 (2020).

    Article 

    Google Scholar
     

  • Jabaudon, D., Sztajzel, J., Sievert, K., Landis, T. & Sztajzel, R. Usefulness of ambulatory 7-day ECG monitoring for the detection of atrial fibrillation and flutter after acute stroke and transient ischemic attack. Stroke 35, 1647–1651 (2004).

    Article 

    Google Scholar
     

  • Karmen, C. L., Reisfeld, M. A., McIntyre, M. K., Timmermans, R. & Frishman, W. The clinical value of heart rate monitoring using an Apple watch. Cardiol. Rev. 27, 60–62 (2019).

    Article 

    Google Scholar
     

  • Bai, Y., Hibbing, P., Mantis, C. & Welk, G. J. Comparative evaluation of heart rate-based monitors: Apple watch vs Fitbit Charge HR. J. Sports Sci. 36, 1734–1741 (2018).

    Article 

    Google Scholar
     

  • Etiwy, M. et al. Accuracy of wearable heart rate monitors in cardiac rehabilitation. Cardiovasc. Diagn. Ther. 9, 262–271 (2019).

    Article 

    Google Scholar
     

  • Velasco-Bosom, S. et al. Conducting polymer–ionic liquid electrode arrays for high-density surface electromyography. Adv. Healthc. Mater. 10, 2100374 (2021).

    Article 

    Google Scholar
     

  • Lee, S., Ozlu, B., Eom, T., Martin, D. C. & Shim, B. S. Electrically conducting polymers for bio-interfacing electronics: from neural and cardiac interfaces to bone and artificial tissue biomaterials. Biosens. Bioelectron. 170, 112620 (2020).

    Article 

    Google Scholar
     

  • Sempionatto, J. R., Lasalde-Ramírez, J. A., Mahato, K., Wang, J. & Gao, W. Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 6, 899–915 (2022).

    Article 

    Google Scholar
     

  • Chung, H. U. et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 26, 418–429 (2020).

    Article 

    Google Scholar
     

  • Chung, H. U. et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019). This article is the first demonstration of wireless wearable sensor systems for vital sign monitoring in neonatal intensive care units.

    Article 

    Google Scholar
     

  • Jiang, Y. et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 41, 652–662 (2023).

    Article 

    Google Scholar
     

  • Wang, Y. et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, e1602076 (2017).

    Article 

    Google Scholar
     

  • Jiang, Z. et al. A 1.3-micrometre-thick elastic conductor for seamless on-skin and implantable sensors. Nat. Electron. 5, 784–793 (2022).

    Article 

    Google Scholar
     

  • Wang, X., Yu, J., Cui, Y. & Li, W. Research progress of flexible wearable pressure sensors. Sens. Actuators A Phys. 330, 112838 (2021).

    Article 

    Google Scholar
     

  • Souri, H. et al. Wearable and stretchable strain sensors: materials, sensing mechanisms, and applications. Adv. Intell. Syst. 2, 2000039 (2020).

    Article 

    Google Scholar
     

  • Amjadi, M., Kyung, K. U., Park, I. & Sitti, M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698 (2016).

    Article 

    Google Scholar
     

  • Arman Kuzubasoglu, B. & Kursun Bahadir, S. Flexible temperature sensors: a review. Sens. Actuators A Phys. 315, 112282 (2020).

    Article 

    Google Scholar
     

  • Wang, C. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2, 687–695 (2018).

    Article 

    Google Scholar
     

  • Wang, C. et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377, 517–523 (2022).

    Article 

    Google Scholar
     

  • Bariya, M., Nyein, H. Y. Y. & Javey, A. Wearable sweat sensors. Nat. Electron. 1, 160–171 (2018).

    Article 

    Google Scholar
     

  • Wang, B. et al. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci. Adv. 8, eabk0967 (2022).

    Article 

    Google Scholar
     

  • Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 6, 1225–1235 (2022).

    Article 

    Google Scholar
     

  • Lee, H. et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11, 566–572 (2016).

    Article 

    Google Scholar
     

  • Bandodkar, A. J., Jeang, W. J., Ghaffari, R. & Rogers, J. A. Wearable sensors for biochemical sweat analysis. Annu. Rev. Anal. Chem. 12, 1–22 (2019).

    Article 

    Google Scholar
     

  • Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl Med. 8, ra165 (2016).

    Article 

    Google Scholar
     

  • Wu, J., Liu, H., Chen, W., Ma, B. & Ju, H. Device integration of electrochemical biosensors. Nat. Rev. Bioeng. 1, 346–360 (2023).

    Article 

    Google Scholar
     

  • Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016). This article demonstrate a fully integrated wearable system for sweat biomarker monitoring, including ions and metabolites.

    Article 

    Google Scholar
     

  • Gao, Y. et al. A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Sci. Adv. 7, eabg9614 (2021).

    Article 

    Google Scholar
     

  • Parlak, O., Keene, S. T., Marais, A., Curto, V. F. & Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 4, eaar2904 (2018).

    Article 

    Google Scholar
     

  • Torrente-Rodríguez, R. M. et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2, 921–937 (2020).

    Article 

    Google Scholar
     

  • Yin, L. et al. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron. 5, 694–705 (2022).

    Article 

    Google Scholar
     

  • Friedel, M. et al. Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat. Biomed. Eng. 7, 1541–1555 (2023).

    Article 

    Google Scholar
     

  • Chatterjee, S., Thakur, R. S., Yadav, R. N., Gupta, L. & Raghuvanshi, D. K. Review of noise removal techniques in ECG signals. IET Signal. Process. 14, 569–590 (2020).

    Article 

    Google Scholar
     

  • Jiang, Y. et al. A universal interface for plug-and-play assembly of stretchable devices. Nature 614, 456–462 (2023).

    Article 

    Google Scholar
     

  • Zhao, Y. et al. Soft strain-insensitive bioelectronics featuring brittle materials. Science 378, 1222–1227 (2022).

    Article 

    Google Scholar
     

  • Park, B. et al. Cuticular pad-inspired selective frequency damper for nearly dynamic noise-free bioelectronics. Science 376, 624–629 (2022).

    Article 

    Google Scholar
     

  • Wang, W. et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron. 4, 143–150 (2021).

    Article 

    Google Scholar
     

  • Zhu, C. et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 1, 183–190 (2018).

    Article 
    MathSciNet 

    Google Scholar
     

  • Rashid, R. B. et al. Ambipolar inverters based on cofacial vertical organic electrochemical transistor pairs for biosignal amplification. Sci. Adv. 7, eabh1055 (2021).

  • Wang, J. et al. Nanomesh organic electrochemical transistor for comfortable on-skin electrodes with local amplifying function. ACS Appl. Electron. Mater. 2, 3601–3609 (2020).

    Article 

    Google Scholar
     

  • Wang, W. et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735–742 (2023).

    Article 

    Google Scholar
     

  • Lathi, B. P. & Ding, Z. Modern Digital and Analog Communication Systems (Oxford Univ. Press, 2018).

  • Chatterjee, B., Mohseni, P. & Sen, S. Bioelectronic sensor nodes for the internet of bodies. Annu. Rev. Biomed. Eng. 25, 101–129 (2023).

    Article 

    Google Scholar
     

  • Boutry, C. M. et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1, 314–321 (2018).

    Article 

    Google Scholar
     

  • Boutry, C. M. et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 3, eaau6914 (2018).

    Article 

    Google Scholar
     

  • You, I. et al. Artificial multimodal receptors based on ion relaxation dynamics. Science 370, 961–965 (2020).

    Article 

    Google Scholar
     

  • Su, Q. et al. A stretchable and strain-unperturbed pressure sensor for motion interference–free tactile monitoring on skins. Sci. Adv. 7, eabi4563 (2021).

    Article 

    Google Scholar
     

  • Yan, Y. et al. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci. Robot. 6, eabc8801 (2021).

    Article 

    Google Scholar
     

  • Dahiya, R. et al. Large-area soft e-skin: the challenges beyond sensor designs. Proc. IEEE 107, 2016–2033 (2019).

    Article 

    Google Scholar
     

  • Lee, Y. et al. A low-power stretchable neuromorphic nerve with proprioceptive feedback. Nat. Biomed. Eng. 7, 511–519 (2023).

    Article 

    Google Scholar
     

  • Kim, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 360, 998–1003 (2018).

    Article 

    Google Scholar
     

  • Tee, B. C.-K. et al. A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015).

    Article 

    Google Scholar
     

  • Yu, X. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019). This article presents a soft and integrated system for touch-based haptic applications to deliver pressure, vibration or motion to wearers.

    Article 

    Google Scholar
     

  • Jung, Y. H. et al. A wireless haptic interface for programmable patterns of touch across large areas of the skin. Nat. Electron. 5, 374–385 (2022).

    Article 

    Google Scholar
     

  • Yang, T.-H. et al. Recent advances and opportunities of active materials for haptic technologies in virtual and augmented reality. Adv. Funct. Mater. 31, 2008831 (2021).

    Article 

    Google Scholar
     

  • Root, S. E. et al. Ionotactile stimulation: nonvolatile ionic gels for human–machine interfaces. ACS Omega 3, 662–666 (2018).

    Article 

    Google Scholar
     

  • Carpenter, C. W. et al. Electropneumotactile stimulation: multimodal haptic actuators enabled by a stretchable conductive polymer on inflatable pockets. Adv. Mater. Technol. 5, 1901119 (2020).

    Article 

    Google Scholar
     

  • Ji, X. et al. Untethered feel-through haptics using 18-µm thick dielectric elastomer actuators. Adv. Funct. Mater. 31, 2006639 (2021).

    Article 

    Google Scholar
     

  • Chen, S., Chen, Y., Yang, J., Han, T. & Yao, S. Skin-integrated stretchable actuators toward skin-compatible haptic feedback and closed-loop human-machine interactions. npj Flex. Electron. 7, 1 (2023).

    Article 

    Google Scholar
     

  • Li, M., Pal, A., Aghakhani, A., Pena-Francesch, A. & Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235–249 (2022).

    Article 

    Google Scholar
     

  • Huang, Y. et al. Recent advances in multi-mode haptic feedback technologies towards wearable interfaces. Mater. Today Phys. 22, 100602 (2022).

    Article 

    Google Scholar
     

  • Chen, Y. et al. How is flexible electronics advancing neuroscience research? Biomaterials 268, 120559 (2021).

    Article 

    Google Scholar
     

  • Chiang, C.-H. et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci. Transl Med. 12, eaay4682 (2020).

    Article 

    Google Scholar
     

  • Tang, X., Shen, H., Zhao, S., Li, N. & Liu, J. Flexible brain–computer interfaces. Nat. Electron. 6, 109–118 (2023). This review article provides critical insight into the unique advantages of soft bioelectronic devices for brain–machine interfaces.

    Article 

    Google Scholar
     

  • Lecomte, A., Descamps, E. & Bergaud, C. A review on mechanical considerations for chronically-implanted neural probes. J. Neural Eng. 15, 031001 (2018).

    Article 

    Google Scholar
     

  • Kozai, T. D., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C. & Cui, X. T. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 6, 48–67 (2015).

    Article 

    Google Scholar
     

  • Koo, J. H., Song, J.-K., Kim, D.-H. & Son, D. Soft implantable bioelectronics. ACS Mater. Lett. 3, 1528–1540 (2021).

    Article 

    Google Scholar
     

  • Shi, Z. et al. Silk-enabled conformal multifunctional bioelectronics for investigation of spatiotemporal epileptiform activities and multimodal neural encoding/decoding. Adv. Sci. 6, 1801617 (2019).

    Article 

    Google Scholar
     

  • Kim, D. H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010).

    Article 

    Google Scholar
     

  • Khodagholy, D. et al. Neurogrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    Article 

    Google Scholar
     

  • Zhang, A. et al. Ultraflexible endovascular probes for brain recording through micrometer-scale vasculature. Science 381, 306–312 (2023).

    Article 

    Google Scholar
     

  • Liu, J. et al. Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015).

    Article 

    Google Scholar
     

  • Liang, Y., Offenhäusser, A., Ingebrandt, S. & Mayer, D. PEDOT:PSS-based bioelectronic devices for recording and modulation of electrophysiological and biochemical cell signals. Adv. Healthc. Mater. 10, 2100061 (2021).

    Article 

    Google Scholar
     

  • Khodagholy, D. et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 4, 1575 (2013).

    Article 

    Google Scholar
     

  • Liu, Y., Feig, V. R. & Bao, Z. Conjugated polymer for implantable electronics toward clinical application. Adv. Healthc. Mater. 10, 2001916 (2021).

    Article 

    Google Scholar
     

  • Xu, N. et al. Functional connectivity of the brain across rodents and humans. Front. Neurosci. 16, 816331 (2022).

    Article 

    Google Scholar
     

  • Musk, E. An integrated brain–machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019).

    Article 

    Google Scholar
     

  • Alivisatos, A. P. et al. Nanotools for neuroscience and brain activity mapping. ACS Nano 7, 1850–1866 (2013).

    Article 

    Google Scholar
     

  • Li, J. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94–101 (2022).

    Article 

    Google Scholar
     

  • Xu, C., Wu, F., Yu, P. & Mao, L. In vivo electrochemical sensors for neurochemicals: recent update. ACS Sens. 4, 3102–3118 (2019).

    Article 

    Google Scholar
     

  • Wen, X. et al. Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery. Biosens. Bioelectron. 131, 37–45 (2019).

    Article 

    Google Scholar
     

  • Zhao, C. et al. Implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring. Sci. Adv. 7, eabj7422 (2021).

    Article 

    Google Scholar
     

  • Wu, G. et al. Implantable aptamer-graphene microtransistors for real-time monitoring of neurochemical release in vivo. Nano Lett. 22, 3668–3677 (2022).

    Article 

    Google Scholar
     

  • Ou, Y., Buchanan, A. M., Witt, C. E. & Hashemi, P. Frontiers in electrochemical sensors for neurotransmitter detection: towards measuring neurotransmitters as chemical diagnostics for brain disorders. Anal. Methods 11, 2738–2755 (2019).

    Article 

    Google Scholar
     

  • Shin, H. et al. Sensitive and selective measurement of serotonin in vivo using fast cyclic square-wave voltammetry. Anal. Chem. 92, 774–781 (2020).

    Article 

    Google Scholar
     

  • Li, S. et al. Implantable hydrogel-protective DNA aptamer-based sensor supports accurate, continuous electrochemical analysis of drugs at multiple sites in living rats. ACS Nano 17, 18525–18538 (2023).

    Article 

    Google Scholar
     

  • Li, H., Wang, J. & Fang, Y. Recent developments in multifunctional neural probes for simultaneous neural recording and modulation. Microsyst. Nanoeng. 9, 4 (2023).

    Article 

    Google Scholar
     

  • Canales, A., Park, S., Kilias, A. & Anikeeva, P. Multifunctional fibers as tools for neuroscience and neuroengineering. Acc. Chem. Res. 51, 829–838 (2018).

    Article 

    Google Scholar
     

  • Lee, M., Shim, H. J., Choi, C. & Kim, D.-H. Soft high-resolution neural interfacing probes: materials and design approaches. Nano Lett. 19, 2741–2749 (2019).

    Article 

    Google Scholar
     

  • Sahasrabudhe, A. et al. Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01833-5 (2023).

  • Hong, Y. J., Jeong, H., Cho, K. W., Lu, N. & Kim, D. H. Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 29, 1808247 (2019). This article reviews flexible and stretchable bioelectronic devices for cardiovascular monitoring and therapy.

    Article 

    Google Scholar
     

  • Lee, W. et al. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Sci. Adv. 4, eaau2426 (2018).

    Article 

    Google Scholar
     

  • Xu, L. et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 5, 3329 (2014).

    Article 

    Google Scholar
     

  • Choi, S. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018).

    Article 

    Google Scholar
     

  • Wang, S. et al. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci. Adv. 8, eabl5511 (2022).

    Article 

    Google Scholar
     

  • Liu, J. et al. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution. Proc. Natl Acad. Sci. USA 117, 14769–14778 (2020).

    Article 

    Google Scholar
     

  • Sim, K. et al. An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nat. Electron. 3, 775–784 (2020).

    Article 

    Google Scholar
     

  • Ryu, H. et al. Materials and design approaches for a fully bioresorbable, electrically conductive and mechanically compliant cardiac patch technology. Adv. Sci. 10, 2303429 (2023).

    Article 

    Google Scholar
     

  • Choi, Y. S. et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 39, 1228–1238 (2021).

    Article 

    Google Scholar
     

  • Woods, G. A., Rommelfanger, N. J. & Hong, G. Bioinspired materials for in vivo bioelectronic neural interfaces. Matter 3, 1087–1113 (2020).

    Article 

    Google Scholar
     

  • Parastarfeizabadi, M. & Kouzani, A. Z. Advances in closed-loop deep brain stimulation devices. J. Neuroeng. Rehabil. 14, 79 (2017).

    Article 

    Google Scholar
     

  • He, F., Lycke, R., Ganji, M., Xie, C. & Luan, L. Ultraflexible neural electrodes for long-lasting intracortical recording. iScience 23, 101387 (2020).

    Article 

    Google Scholar
     

  • Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    Article 

    Google Scholar
     

  • Tringides, C. M. et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat. Nanotechnol. 16, 1019–1029 (2021).

    Article 

    Google Scholar
     

  • Lee, J. H., Kim, H., Kim, J. H. & Lee, S.-H. Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. Lab Chip 16, 959–976 (2016).

    Article 

    Google Scholar
     

  • Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017).

    Article 

    Google Scholar
     

  • Huang, Q. A., Dong, L. & Wang, L. F. LC passive wireless sensors toward a wireless sensing platform: status, prospects, and challenges. J. Microelectromech. Syst. 25, 822–841 (2016).

    Article 

    Google Scholar
     

  • Niu, S. et al. A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2, 361–368 (2019). This article demonstrates a fully soft and stretchable passive tag system for on-skin vital sign monitoring.

    Article 

    Google Scholar
     

  • Lee, J. et al. Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron. 4, 291–301 (2021).

    Article 

    Google Scholar
     

  • Chen, L. Y. et al. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 5, 5028 (2014).

    Article 

    Google Scholar
     

  • Kim, J. et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 8, 14997 (2017).

    Article 

    Google Scholar
     

  • Boutry, C. M. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019).

    Article 

    Google Scholar
     

  • Fernando, S. M. et al. Diagnosis of elevated intracranial pressure in critically ill adults: systematic review and meta-analysis. BMJ 366, l4225 (2019).

    Article 

    Google Scholar
     

  • Kananian, S., Alexopoulos, G. & Poon, A. S. Y. Robust wireless interrogation of fully-passive RLC sensors. IEEE Trans. Circuits Syst. I 69, 1427–1440 (2022).

    Article 

    Google Scholar
     

  • Olenik, S., Lee, H. S. & Güder, F. The future of near-field communication-based wireless sensing. Nat. Rev. Mater. 6, 286–288 (2021).

    Article 

    Google Scholar
     

  • Park, Y.-G., Lee, S. & Park, J.-U. Recent progress in wireless sensors for wearable electronics. Sensors 19, 4353 (2019).

    Article 

    Google Scholar
     

  • Han, S. et al. Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci. Transl Med. 10, eaan4950 (2018).

    Article 

    Google Scholar
     

  • Bandodkar, A. J. et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5, eaav3294 (2019).

    Article 

    Google Scholar
     

  • Matsuhisa, N. et al. High-frequency and intrinsically stretchable polymer diodes. Nature 600, 246–252 (2021).

    Article 

    Google Scholar
     

  • Zheng, Y.-Q. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021).

    Article 

    Google Scholar
     

  • Ometov, A. et al. A survey on wearable technology: history, state-of-the-art and current challenges. Comput. Netw. 193, 108074 (2021).

    Article 

    Google Scholar
     

  • Cai, Y. et al. Mixed-dimensional mxene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv. 6, eabb5367 (2020).

    Article 

    Google Scholar
     

  • Lin, M. et al. A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects. Nat. Biotechnol. 42, 448–457 (2023).

    Article 

    Google Scholar
     

  • Yuce, M. R. Implementation of wireless body area networks for healthcare systems. Sens. Actuators A 162, 116–129 (2010).

    Article 

    Google Scholar
     

  • Song, W.-J. et al. Recent progress in stretchable batteries for wearable electronics. Batteries Supercaps 2, 181–199 (2019).

    Article 

    Google Scholar
     

  • Mackanic, D. G. et al. Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nat. Commun. 10, 5384 (2019).

    Article 

    Google Scholar
     

  • Xiao, X. et al. An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Sci. Adv. 7, eabl3742 (2021).

    Article 

    Google Scholar
     

  • Agarwal, K., Jegadeesan, R., Guo, Y. X. & Thakor, N. V. Wireless power transfer strategies for implantable bioelectronics. IEEE Rev. Biomed. Eng. 10, 136–161 (2017).

    Article 

    Google Scholar
     

  • Won, S. M., Cai, L., Gutruf, P. & Rogers, J. A. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. 7, 405–423 (2023).

    Article 

    Google Scholar
     

  • Zhou, Y., Xiao, X., Chen, G., Zhao, X. & Chen, J. Self-powered sensing technologies for human metaverse interfacing. Joule 6, 1381–1389 (2022).

    Article 

    Google Scholar
     

  • Jeerapan, I., Sempionatto, J. R. & Wang, J. On-body bioelectronics: wearable biofuel cells for bioenergy harvesting and self-powered biosensing. Adv. Funct. Mater. 30, 1906243 (2020).

    Article 

    Google Scholar
     

  • Hinchet, R. et al. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491–494 (2019).

    Article 

    Google Scholar
     

  • Yu, Y. et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human–machine interfaces. Sci. Robot. 5, eaaz7946 (2020).

    Article 

    Google Scholar
     

  • Song, Y. et al. Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 6, eaay9842 (2020).

    Article 

    Google Scholar
     

  • Liu, J. et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat. Commun. 11, 3362 (2020).

    Article 

    Google Scholar
     

  • Yokota, T. et al. Ultraflexible organic photonic skin. Sci. Adv. 2, e1501856 (2016).

    Article 

    Google Scholar
     

  • Zhang, Z. et al. High-brightness all-polymer stretchable led with charge-trapping dilution. Nature 603, 624–630 (2022).

    Article 

    Google Scholar
     

  • Choi, M. K., Yang, J., Hyeon, T. & Kim, D.-H. Flexible quantum dot light-emitting diodes for next-generation displays. npj Flex. Electron. 2, 10 (2018).

    Article 

    Google Scholar
     

  • Yang, J. C. et al. Geometrically engineered rigid island array for stretchable electronics capable of withstanding various deformation modes. Sci. Adv. 8, eabn3863 (2022).

  • Lee, B. et al. Stretchable hybrid electronics: combining rigid electronic devices with stretchable interconnects into high-performance on-skin electronics. J. Inf. Disp. 23, 163–184 (2022).

    Article 

    Google Scholar
     

  • Lee, Y. et al. Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Sci. Adv. 7, eabg9180 (2021).

    Article 

    Google Scholar
     

  • Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494–499 (2009).

    Article 

    Google Scholar
     

  • Harrison, C., Tan, D. & Morris, D. Skinput: appropriating the skin as an interactive canvas. Commun. ACM 54, 111–118 (2011).

    Article 

    Google Scholar
     

  • Koo, J. H., Kim, D. C., Shim, H. J., Kim, T.-H. & Kim, D.-H. Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv. Funct. Mater. 28, 1801834 (2018).

    Article 

    Google Scholar
     

  • Zhao, Z., Liu, K., Liu, Y., Guo, Y. & Liu, Y. Intrinsically flexible displays: key materials and devices. Natl Sci. Rev. 9, nwac090 (2022).

    Article 

    Google Scholar
     

  • Dang, W., Vinciguerra, V., Lorenzelli, L. & Dahiya, R. Printable stretchable interconnects. Flex. Print. Electron. 2, 013003 (2017).

    Article 

    Google Scholar
     

  • Trung, T. Q. & Lee, N.-E. Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv. Mater. 29, 1603167 (2017).

    Article 

    Google Scholar
     

  • Lv, J., Thangavel, G. & Lee, P. S. Reliability of printed stretchable electronics based on nano/micro materials for practical applications. Nanoscale 15, 434–449 (2023).

    Article 

    Google Scholar
     

  • Yun, G. et al. Hybrid-filler stretchable conductive composites: from fabrication to application. Small Sci. 1, 2000080 (2021).

    Article 

    Google Scholar
     

  • Matsuhisa, N. et al. High-transconductance stretchable transistors achieved by controlled gold microcrack morphology. Adv. Electron. Mater. 5, 1900347 (2019).

    Article 

    Google Scholar
     

  • Tang, L. X., Shang, J. & Jiang, X. Y. Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci. Adv. 7, eabe3778 (2021).

    Article 

    Google Scholar
     

  • Kim, M.-g, Brown, D. K. & Brand, O. Nanofabrication for all-soft and high-density electronic devices based on liquid metal. Nat. Commun. 11, 1002 (2020).

    Article 

    Google Scholar
     

  • Lee, W. et al. Universal assembly of liquid metal particles in polymers enables elastic printed circuit board. Science 378, 637–641 (2022).

    Article 

    Google Scholar
     

  • Lee, G.-H. et al. Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics. Nat. Commun. 13, 2643 (2022).

    Article 

    Google Scholar
     

  • Najafov, H., Mastrogiovanni, D., Garfunkel, E., Feldman, L. C. & Podzorov, V. Photon-assisted oxygen diffusion and oxygen-related traps in organic semiconductors. Adv. Mater. 23, 981–985 (2011).

    Article 

    Google Scholar
     

  • Park, S., Choi, W., Kim, S. H., Lee, H. & Cho, K. Protonated organic semiconductors: origin of water-induced charge trap generation. Adv. Mater. 35, 2303707 (2023).

    Article 

    Google Scholar
     

  • Zheng, Y. et al. Environmentally stable and stretchable polymer electronics enabled by surface-tethered nanostructured molecular-level protection. Nat. Nanotechnol. 18, 1175–1184 (2023).

    Article 

    Google Scholar
     

  • Liu, C. et al. Multifunctional materials strategies for enhanced safety of wireless, skin-interfaced bioelectronic devices. Adv. Funct. Mater. 33, 2302256 (2023).

    Article 

    Google Scholar
     

  • Le Floch, P., Meixuanzi, S., Tang, J., Liu, J. & Suo, Z. Stretchable seal. ACS Appl. Mater. Interfaces 10, 27333–27343 (2018).

    Article 

    Google Scholar
     

  • Shen, Q. et al. Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems. Science 379, 488–493 (2023).

    Article 

    Google Scholar
     

  • Tu, J. & Gao, W. Ethical considerations of wearable technologies in human research. Adv. Healthc. Mater. 10, 2100127 (2021).

    Article 

    Google Scholar
     

  • US Food and Drug Administration. Use of International Standard ISO 10993-1, “Biological evaluation of medical devices — Part 1: Evaluation and testing within a risk management process” (FDA, 2020).

  • Johansen, J. D. et al. European society of contact dermatitis guideline for diagnostic patch testing — recommendations on best practice. Contact Dermat. 73, 195–221 (2015).

    Article 

    Google Scholar
     

  • Lee, E. K., Lee, M. Y., Park, C. H., Lee, H. R. & Oh, J. H. Toward environmentally robust organic electronics: approaches and applications. Adv. Mater. 29, 1703638 (2017).

    Article 

    Google Scholar
     

  • Yang, Q. et al. Ecoresorbable and bioresorbable microelectromechanical systems. Nat. Electron. 5, 526–538 (2022).

    Article 

    Google Scholar
     

  • Shin, J. et al. Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat. Biomed. Eng. 3, 37–46 (2019).

    Article 

    Google Scholar
     

  • Kim, G. H. et al. Cnt-au nanocomposite deposition on gold microelectrodes for improved neural recordings. Sens. Actuators B 252, 152–158 (2017).

    Article 

    Google Scholar
     

  • Park, J. et al. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci. Transl Med. 8, 344ra386–344ra386 (2016).

    Article 

    Google Scholar
     

  • Jung, D. et al. Metal-like stretchable nanocomposite using locally-bundled nanowires for skin-mountable devices. Adv. Mater. 35, 2303458 (2023).

    Article 

    Google Scholar
     

  • Decataldo, F. et al. Stretchable low impedance electrodes for bioelectronic recording from small peripheral nerves. Sci. Rep. 9, 10598 (2019).

    Article 

    Google Scholar
     

  • Handschuh-Wang, S., Stadler, F. J. & Zhou, X. Critical review on the physical properties of gallium-based liquid metals and selected pathways for their alteration. J. Phys. Chem. C 125, 20113–20142 (2021).

    Article 

    Google Scholar
     

  • Guo, R. & Liu, J. Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions. J. Micromech. Microeng. 27, 104002 (2017).

    Article 

    Google Scholar
     

  • Khang, D.-Y., Jiang, H., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006).

    Article 

    Google Scholar
     

  • Han, X. et al. Nanomeshed Si nanomembranes. npj Flex. Electron. 3, 9 (2019).

    Article 

    Google Scholar
     

  • Mun, J. et al. A design strategy for high mobility stretchable polymer semiconductors. Nat. Commun. 12, 3572 (2021).

    Article 

    Google Scholar
     

  • Sun, J. et al. Air/liquid interfacial self-assembled intrinsically stretchable IDT-BT film combining a deliberate transfer adherence strategy for stretchable electronics. ACS Appl. Mater. Interfaces 15, 46108–46118 (2023).

    Article 

    Google Scholar
     

  • Zhao, B. et al. Simultaneous enhancement of stretchability, strength, and mobility in ultrahigh-molecular-weight poly(indacenodithiophene-co-benzothiadiazole). Macromolecules 54, 9896–9905 (2021).

    Article 

    Google Scholar
     

  • Ding, L. et al. Polymer semiconductors: synthesis, processing, and applications. Chem. Rev. 123, 7421–7497 (2023).

    Article 

    Google Scholar
     

  • Guan, Y.-S. et al. Elastic electronics based on micromesh-structured rubbery semiconductor films. Nat. Electron. 5, 881–892 (2022).

    Article 

    Google Scholar
     

  • Shim, H. et al. Elastic integrated electronics based on a stretchable n-type elastomer–semiconductor–elastomer stack. Nat. Electron. 6, 349–359 (2023).

    Article 

    Google Scholar
     

  • Kim, H.-J., Sim, K., Thukral, A. & Yu, C. Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Sci. Adv. 3, e1701114 (2017).

    Article 

    Google Scholar
     

  • Yan, Z. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 375, 852–859 (2022).

    Article 

    Google Scholar
     

  • Liang, J. et al. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nat. Commun. 6, 7647 (2015).

    Article 

    Google Scholar
     

  • Jiao, H. et al. Intrinsically stretchable all-carbon-nanotube transistors with styrene–ethylene–butylene–styrene as gate dielectrics integrated by photolithography-based process. RSC Adv. 10, 8080–8086 (2020).

    Article 

    Google Scholar
     

  • Koo, J. H. et al. A vacuum-deposited polymer dielectric for wafer-scale stretchable electronics. Nat. Electron. 6, 137–145 (2023).

    Article 

    Google Scholar
     

  • Lu, C., Lee, W.-Y., Shih, C.-C., Wen, M.-Y. & Chen, W.-C. Stretchable polymer dielectrics for low-voltage-driven field-effect transistors. ACS Appl. Mater. Interfaces 9, 25522–25532 (2017).

    Article 

    Google Scholar
     

  • Tan, Y. J. et al. A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics. Nat. Mater. 19, 182–188 (2020).

    Article 

    Google Scholar
     

  • Kong, D. et al. Capacitance characterization of elastomeric dielectrics for applications in intrinsically stretchable thin film transistors. Adv. Funct. Mater. 26, 4680–4686 (2016).

    Article 

    Google Scholar
     

  • Jin, H. et al. Stretchable dual-capacitor multi-sensor for touch-curvature-pressure-strain sensing. Sci. Rep. 7, 10854 (2017).

    Article 

    Google Scholar
     

  • Ankit et al. High-k, ultrastretchable self-enclosed ionic liquid–elastomer composites for soft robotics and flexible electronics. ACS Appl. Mater. Interfaces 12, 37561–37570 (2020).

    Article 

    Google Scholar
     

  • Shin, M. et al. Highly stretchable polymer transistors consisting entirely of stretchable device components. Adv. Mater. 26, 3706–3711 (2014).

    Article 

    Google Scholar
     

  • Xu, S. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014).

    Article 

    Google Scholar
     

  • Ji, X. et al. Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor. Nat. Commun. 12, 2480 (2021).

    Article 

    Google Scholar
     

  • Tao, X.-M. Virtual and augmented reality enhanced by touch. Nature 575, 453–454 (2019).

    Article 

    Google Scholar
     

  • Shim, H. J., Sunwoo, S.-H., Kim, Y., Koo, J. H. & Kim, D.-H. Functionalized elastomers for intrinsically soft and biointegrated electronics. Adv. Healthc. Mater. 10, 2002105 (2021).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci. Adv. 5, eaaw5296 (2019).

    Article 

    Google Scholar
     

  • Jung, Y. H. et al. Injectable biomedical devices for sensing and stimulating internal body organs. Adv. Mater. 32, 1907478 (2020).

    Article 

    Google Scholar
     

  • Rogers, J. A., Lagally, M. G. & Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477, 45–53 (2011).

    Article 

    Google Scholar
     

  • Zhao, C. et al. Flexible and implantable polyimide aptamer-field-effect transistor biosensors. ACS Sens. 7, 3644–3653 (2022).

    Article 

    Google Scholar
     

  • Nelson, C. M., Dewald, J. P. A. & Murray, W. M. In vivo measurements of biceps brachii and triceps brachii fascicle lengths using extended field-of-view ultrasound. J. Biomech. 49, 1948–1952 (2016).

    Article 

    Google Scholar
     

  • Kawel-Boehm, N. et al. Reference ranges (‘normal values’) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J. Cardiovasc. Magn. Reson. 22, 87 (2020).

    Article 

    Google Scholar
     

  • Bianchi, F., Hofmann, F., Smith, A. J., Ye, H. & Thompson, M. S. Probing multi-scale mechanics of peripheral nerve collagen and myelin by X-ray diffraction. J. Mech. Behav. Biomed. Mater. 87, 205–212 (2018).

    Article 

    Google Scholar
     

  • Lee, H., Bellamkonda, R. V., Sun, W. & Levenston, M. E. Biomechanical analysis of silicon microelectrode-induced strain in the brain. J. Neural Eng. 2, 81 (2005).

    Article 

    Google Scholar
     

  • Sloots, J. J., Biessels, G. J. & Zwanenburg, J. J. M. Cardiac and respiration-induced brain deformations in humans quantified with high-field MRI. Neuroimage 210, 116581 (2020).

    Article 

    Google Scholar
     

  • Sharafkhani, N. et al. Neural tissue-microelectrode interaction: brain micromotion, electrical impedance, and flexible microelectrode insertion. J. Neurosci. Methods 365, 109388 (2022).

    Article 

    Google Scholar
     

  • Wang, S. & Urban, M. W. Self-healing polymers. Nat. Rev. Mater. 5, 562–583 (2020).

    Article 

    Google Scholar
     

  • Kang, J., Tok, J. B. H. & Bao, Z. Self-healing soft electronics. Nat. Electron. 2, 144–150 (2019).

    Article 

    Google Scholar
     

  • Cooper, C. et al. Autonomous alignment and self-healing in multilayer soft electronics using dynamic polymers with immiscible backbones. Science 380, 935–941 (2023).

    Article 

    Google Scholar
     

  • Chiong, J. A., Tran, H., Lin, Y., Zheng, Y. & Bao, Z. Integrating emerging polymer chemistries for the advancement of recyclable, biodegradable, and biocompatible electronics. Adv. Sci. 8, e2101233 (2021).

    Article 

    Google Scholar
     

  • Choi, Y. S. et al. A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science 376, 1006–1012 (2022).

    Article 

    Google Scholar
     

  • Kang, S. K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).

    Article 

    Google Scholar
     

  • Li, C. et al. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 5, 61–81 (2020).

    Article 

    Google Scholar
     

  • Beurskens, N. E. G., Tjong, F. V. Y. & Knops, R. End-of-life management of leadless cardiac pacemaker therapy. Arrhythm. Electrophysiol. Rev. 6, 129–133 (2017). 2017.

    Article 

    Google Scholar
     

  • Shim, J.-S., Rogers, J. A. & Kang, S.-K. Physically transient electronic materials and devices. Mater. Sci. Eng. R Rep. 145, 100624 (2021).

    Article 

    Google Scholar
     

  • Han, W. B., Lee, J. H., Shin, J.-W. & Hwang, S.-W. Advanced materials and systems for biodegradable, transient electronics. Adv. Mater. 32, 2002211 (2020).

    Article 

    Google Scholar
     

  • Koo, J. et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 24, 1830–1836 (2018). This article presents a fully biodegradable wireless bioelectronic device for neuroregenerative therapy.

    Article 

    Google Scholar
     

  • Huang, Q. & Zheng, Z. Pathway to developing permeable electronics. ACS Nano 16, 15537–15544 (2022).

    Article 

    Google Scholar
     

  • Zhou, W. et al. Gas-permeable, ultrathin, stretchable epidermal electronics with porous electrodes. ACS Nano 14, 5798–5805 (2020).

    Article 

    Google Scholar
     

  • Yang, X. et al. Ultrathin, stretchable, and breathable epidermal electronics based on a facile bubble blowing method. Adv. Electron. Mater. 6, 2000306 (2020).

    Article 

    Google Scholar
     

  • Miyamoto, A. et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12, 907–913 (2017).

    Article 

    Google Scholar
     

  • Kim, K. K. et al. A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nat. Electron. 6, 64–75 (2023).


    Google Scholar
     

  • Schiavone, G. et al. Guidelines to study and develop soft electrode systems for neural stimulation. Neuron 108, 238–258 (2020).

    Article 

    Google Scholar
     

  • Merrill, D. R., Bikson, M. & Jefferys, J. G. R. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141, 171–198 (2005).

    Article 

    Google Scholar
     

  • Ishai, P. B., Talary, M. S., Caduff, A., Levy, E. & Feldman, Y. Electrode polarization in dielectric measurements: a review. Meas. Sci. Technol. 24, 102001 (2013).

    Article 

    Google Scholar
     

  • Paulsen, B. D., Tybrandt, K., Stavrinidou, E. & Rivnay, J. Organic mixed ionic–electronic conductors. Nat. Mater. 19, 13–26 (2020).

    Article 

    Google Scholar
     

  • Tan, S. T. M. et al. Mixed ionic–electronic conduction, a multifunctional property in organic conductors. Adv. Mater. 34, 2110406 (2022).

    Article 

    Google Scholar
     

  • Inal, S., Malliaras, G. G. & Rivnay, J. Benchmarking organic mixed conductors for transistors. Nat. Commun. 8, 1767 (2017).

    Article 

    Google Scholar
     

  • Keene, S. T., Rao, A. & Malliaras, G. G. The relationship between ionic–electronic coupling and transport in organic mixed conductors. Sci. Adv. 9, eadi3536 (2023).

    Article 

    Google Scholar
     

  • Li, Y., Li, N., De Oliveira, N. & Wang, S. Implantable bioelectronics toward long-term stability and sustainability. Matter 4, 1125–1141 (2021).

    Article 

    Google Scholar
     

  • Mariello, M., Kim, K., Wu, K., Lacour, S. P. & Leterrier, Y. Recent advances in encapsulation of flexible bioelectronic implants: materials, technologies, and characterization methods. Adv. Mater. 34, 2201129 (2022).

    Article 

    Google Scholar
     

  • Wang, B. et al. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118, 5690–5754 (2018).

    Article 

    Google Scholar
     

  • Wang, S. et al. Polymer-based dielectrics with high permittivity and low dielectric loss for flexible electronics. J. Mater. Chem. C 10, 6196–6221 (2022).

    Article 

    Google Scholar
     

  • Huang, Z. et al. Three-dimensional integrated stretchable electronics. Nat. Electron. 1, 473–480 (2018).

    Article 

    Google Scholar