
Ellis, R. J. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 11, 114–119 (2001).
Stewart, M. P., Langer, R. & Jensen, K. F. Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem. Rev. 118, 7409–7531 (2018).
Chau, C., Actis, P. & Hewitt, E. Methods for protein delivery into cells: from current approaches to future perspectives. Biochem. Soc. Trans. 48, 357–365 (2020).
Fu, A., Tang, R., Hardie, J., Farkas, M. E. & Rotello, V. M. Promises and pitfalls of intracellular delivery of proteins. Bioconjug. Chem. 25, 1602–1608 (2014).
Stockslager, M. A. et al. Optical method for automated measurement of glass micropipette tip geometry. Precis. Eng. 46, 88–95 (2016).
Orynbayeva, Z. et al. Physiological validation of cell health upon probing with carbon nanotube endoscope and its benefit for single-cell interrogation. Nanomedicine 8, 590–598 (2012).
Guillaume-Gentil, O. et al. Force-controlled fluidic injection into single cell nuclei. Small 9, 1904–1907 (2013).
Meister, A. et al. FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett. 9, 2501–2507 (2009).
VanDersarl, J. J., Xu, A. M. & Melosh, N. A. Nanostraws for direct fluidic intracellular access. Nano Lett. 12, 3881–3886 (2012).
Golshadi, M., Wright, L. K., Dickerson, I. M. & Schrlau, M. G. High-efficiency gene transfection of cells through carbon nanotube arrays. Small 12, 3014–3020 (2016).
Cao, Y. et al. Universal intracellular biomolecule delivery with precise dosage control. Sci. Adv. https://doi.org/10.1126/sciadv.aat8131 (2018).
Singhal, R. et al. Multifunctional carbon-nanotube cellular endoscopes. Nat. Nanotechnol. 6, 57–64 (2011).
Kang, W. et al. Nanofountain probe electroporation (NFP-E) of single cells. Nano Lett. 13, 2448–2457 (2013).
Nathamgari, S. S. P. et al. Nanofountain probe electroporation enables versatile single-cell intracellular delivery and investigation of postpulse electropore dynamics. Small https://doi.org/10.1002/smll.202002616 (2020).
Cao, Y. et al. Nontoxic nanopore electroporation for effective intracellular delivery of biological macromolecules. Proc. Natl Acad. Sci. USA 116, 7899–7904 (2019).
Chen, Z. et al. Nanopore-mediated protein delivery enabling three-color single-molecule tracking in living cells. Proc. Natl Acad. Sci. USA 118, e2012229118 (2021).
Laforge, F. O., Carpino, J., Rotenberg, S. A. & Mirkin, M. V. Electrochemical attosyringe. Proc. Natl Acad. Sci. USA 104, 11895–11900 (2007).
Shekaramiz, E., Varadarajalu, G., Day, P. J. & Wickramasinghe, H. K. Integrated electrowetting nanoinjector for single cell transfection. Sci. Rep. https://doi.org/10.1038/srep29051 (2016).
Elnathan, R., Tay, A., Voelcker, N. H. & Chiappini, C. The start-ups taking nanoneedles into the clinic. Nat. Nanotechnol. https://doi.org/10.1038/s41565-022-01158-5 (2022).
Elnathan, R. et al. Biointerface design for vertical nanoprobes. Nat. Rev. Mater. 7, 953–973 (2022).
Chiappini, C. et al. Tutorial: using nanoneedles for intracellular delivery. Nat. Protoc. 16, 4539–4563 (2021).
Yoh, H. Z. et al. Polymeric nanoneedle arrays mediate stiffness-independent intracellular delivery. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202104828 (2021).
Shokouhi, A. R. et al. Engineering efficient CAR-T cells via electroactive nanoinjection. Adv. Mater. 35, e2304122 (2023).
Shokouhi, A.-R. et al. Electroactive nanoinjection platform for intracellular delivery and gene silencing. J. Nanobiotechnol. 21, 273 (2023).
Shigyou, K. et al. Geometrical characterization of glass nanopipettes with sub-10 nm pore diameter by transmission electron microscopy. Anal. Chem. 92, 15388–15393 (2020).
Varongchayakul, N., Song, J., Meller, A. & Grinstaff, M. W. Single-molecule protein sensing in a nanopore: a tutorial. Chem. Soc. Rev. 47, 8512–8524 (2018).
Leitao, S. M. et al. Spatially multiplexed single-molecule translocations through a nanopore at controlled speeds. Nat. Nanotechnol. 18, 1078–1084 (2023).
Hennig, S. et al. Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes. Nano Lett. 15, 1374–1381 (2015).
Simonis, M., Hubner, W., Wilking, A., Huser, T. & Hennig, S. Survival rate of eukaryotic cells following electrophoretic nanoinjection. Sci. Rep. 7, 41277 (2017).
Simonis, M. et al. MoNa—a cost-efficient, portable system for the nanoinjection of living cells. Sci. Rep. 9, 5480 (2019).
Adam Seger, R. et al. Voltage controlled nano-injection system for single-cell surgery. Nanoscale 4, 5843–5846, (2012).
Raveendran, M., Lee, A. J., Wälti, C. & Actis, P. Analysis of 2D DNA origami with nanopipettes. ChemElectroChem 5, 3014–3020 (2018).
Chau, C. C., Radford, S. E., Hewitt, E. W. & Actis, P. Macromolecular crowding enhances the detection of DNA and proteins by a solid-state nanopore. Nano Lett. 20, 5553–5561 (2020).
Raveendran, M., Leach, A. R., Hopes, T., Aspden, J. L. & Actis, P. Ribosome fingerprinting with a solid-state nanopore. ACS Sens. 5, 3533–3539 (2020).
Raveendran, M., Lee, A. J., Sharma, R., Wälti, C. & Actis, P. Rational design of DNA nanostructures for single molecule biosensing. Nat. Commun. 11, 4384 (2020).
Chau, C. et al. Probing RNA conformations using a polymer–electrolyte solid-state nanopore. ACS Nano 16, 20075–20085 (2022).
Confederat, S., Sandei, I., Mohanan, G., Wälti, C. & Actis, P. Nanopore fingerprinting of supramolecular DNA nanostructures. Biophys. J. 121, 4882–4891 (2022).
Marcuccio, F. et al. Mechanistic study of the conductance and enhanced single-molecule detection in a polymer–electrolyte nanopore. ACS Nanosci. Au 3, 172–181 (2023).
Confederat, S. et al. Next-generation nanopore sensors based on conductive pulse sensing for enhanced detection of nanoparticles. Small https://doi.org/10.1002/smll.202305186 (2023).
Zhu, C., Huang, K., Siepser, N. P. & Baker, L. A. Scanning ion conductance microscopy. Chem. Rev. https://doi.org/10.1021/acs.chemrev.0c00962 (2020).
Page, A., Perry, D. & Unwin, P. R. Multifunctional scanning ion conductance microscopy. Proc. R. Soc. A. 473, 20160889 (2017).
Novak, P. et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat. Methods 6, 279–281 (2009).
Marcuccio, F. et al. Single-cell nanobiopsy enables multigenerational longitudinal transcriptomics of cancer cells. Sci. Adv. 10, eadl0515 (2024).
Yang, N. J. & Hinner, M. J. Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Methods Mol. Biol. https://doi.org/10.1007/978-1-4939-2272-7_3 (2015).
Aramesh, M. et al. Localized detection of ions and biomolecules with a force-controlled scanning nanopore microscope. Nat. Nanotechnol. 14, 791–798 (2019).
Cho, S. W., Lee, J. Y., Carroll, D., Kim, J. S. & Lee, J. H. Heritable gene knockout in caenorhabditis elegans by direct injection of Cas9–sgRNA ribonucleoproteins. Genetics 195, 1177–1180 (2013).
Chaverra-Rodriguez, D. et al. Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing. Nat. Commun. 9, 3008 (2018).
Kreis, T. E. & Birchmeier, W. Microinjection of fluorescently labeled proteins into living cells with emphasis on cytoskeletal proteins. Int. Rev. Cytol. https://doi.org/10.1016/s0074-7696(08)61005-0 (1982).
Keppeke, G., Andrade, L. E. C., Grieshaber, S. S. & Chan, E. K. L. Microinjection of specific anti-IMPDH2 antibodies induces disassembly of cytoplasmic rods/rings that are primarily stationary and stable structures. Cell Biosci. 5, 1 (2015).
Dixon, C., Platani, M., Makarov, A. & Schirmer, E. Microinjection of antibodies targeting the lamin A/C histone-binding site blocks mitotic entry and reveals separate chromatin interactions with HP1, CenpB and PML. Cells 6, 9 (2017).
Dobson, J. et al. Inducing protein aggregation by extensional flow. Proc. Natl Acad. Sci. USA 114, 4673–4678 (2017).
Bartesaghi, A., Matthies, D., Banerjee, S., Merk, A. & Subramaniam, S. Structure of β-galactosidase at 3.2-A resolution obtained by cryo-electron microscopy. Proc. Natl Acad. Sci. USA 111, 11709–11714 (2014).
Juers, D. H., Matthews, B. W. & Huber, R. E. LacZ β-galactosidase: structure and function of an enzyme of historical and molecular biological importance. Protein Sci. 21, 1792–1807 (2012).
Li, X., Jiang, Y., Chong, S. & Walt, D. R. Bottom-up single-molecule strategy for understanding subunit function of tetrameric β-galactosidase. Proc. Natl Acad. Sci. USA 115, 8346–8351 (2018).
Hazel, A. L. & Pedley, T. J. Vascular endothelial cells minimize the total force on their nuclei. Biophys. J. 78, 47–54 (2000).
Doura, T. et al. Detection of LacZ-positive cells in living tissue with single-cell resolution. Angew. Chem. Int. Ed. 55, 9620–9624 (2016).
Iadanza, M. G., Jackson, M. P., Hewitt, E. W., Ranson, N. A. & Radford, S. E. A new era for understanding amyloid structures and disease. Nat. Rev. Mol. Cell Biol. 19, 755–773 (2018).
Zong, W. et al. Synthetic intracellular environments: from basic science to applications. Anal. Chem. 95, 535–549 (2023).
Nishizawa, K. et al. Universal glass-forming behavior of in vitro and living cytoplasm. Sci. Rep. 7, 15143 (2017).
Smeets, R. M. M. et al. Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett. 6, 89–95 (2005).
Kesselheim, S., Müller, W. & Holm, C. Origin of current blockades in nanopore translocation experiments. Phys. Rev. Lett. 112, 018101 (2014).
Huang, J. A. et al. On-demand intracellular delivery of single particles in single cells by 3D hollow nanoelectrodes. Nano Lett. 19, 722–731 (2019).
Kurz, V., Tanaka, T. & Timp, G. Single cell transfection with single molecule resolution using a synthetic nanopore. Nano Lett. 14, 604–611 (2014).
Pandey, P., Sesena-Rubfiaro, A., Khatri, S. & He, J. Development of multifunctional nanopipettes for controlled intracellular delivery and single-entity detection. Faraday Discuss. 233, 315–335 (2022).
Stefanis, L.- Synuclein in Parkinson’s Disease. Cold Spring Harb. Perspect. Med. 2, a009399–a009399 (2011).
Fusco, G. et al. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science 358, 1440–1443 (2017).
Cascella, R. et al. The release of toxic oligomers from α-synuclein fibrils induces dysfunction in neuronal cells. Nat. Commun. 12, 1814 (2021).
Sang, J. C. et al. Super-resolution imaging reveals α-synuclein seeded aggregation in SH-SY5Y cells. Commun. Biol. 4, 613 (2021).
Mahul-Mellier, A.-L. et al. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc. Natl Acad. Sci. USA 117, 4971–4982 (2020).
Mao, X. et al. Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353, aah3374 (2016).
Scheres, S. H. W., Ryskeldi-Falcon, B. & Goedert, M. Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Nature 621, 701–710 (2023).
Wells-Holland, C. & Elfick, A. Transfection reflections: fit-for-purpose delivery of nucleic acids. Nat. Rev. Mol. Cell Biol. 24, 771–772 (2023).
Maffeo, C. & Aksimentiev, A. MrDNA: a multi-resolution model for predicting the structure and dynamics of DNA systems. Nucleic Acids Res. 48, 5135–5146 (2020).
Comer, J. & Aksimentiev, A. Predicting the DNA sequence dependence of nanopore ion current using atomic-resolution Brownian dynamics. J. Phys. Chem. C 116, 3376–3393 (2012).
Chen, K. et al. Super-resolution detection of DNA nanostructures using a nanopore. Adv. Mater. 35, e2207434 (2023).
Wilson, J., Sarthak, K., Si, W., Gao, L. & Aksimentiev, A. Rapid and accurate determination of nanopore ionic current using a steric exclusion model. ACS Sens. 4, 634–644 (2019).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41467-024-48608-3