Search
Close this search box.

Single molecule delivery into living cells – Nature Communications

  • Ellis, R. J. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 11, 114–119 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Stewart, M. P., Langer, R. & Jensen, K. F. Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem. Rev. 118, 7409–7531 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chau, C., Actis, P. & Hewitt, E. Methods for protein delivery into cells: from current approaches to future perspectives. Biochem. Soc. Trans. 48, 357–365 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Fu, A., Tang, R., Hardie, J., Farkas, M. E. & Rotello, V. M. Promises and pitfalls of intracellular delivery of proteins. Bioconjug. Chem. 25, 1602–1608 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stockslager, M. A. et al. Optical method for automated measurement of glass micropipette tip geometry. Precis. Eng. 46, 88–95 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orynbayeva, Z. et al. Physiological validation of cell health upon probing with carbon nanotube endoscope and its benefit for single-cell interrogation. Nanomedicine 8, 590–598 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Guillaume-Gentil, O. et al. Force-controlled fluidic injection into single cell nuclei. Small 9, 1904–1907 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Meister, A. et al. FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett. 9, 2501–2507 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • VanDersarl, J. J., Xu, A. M. & Melosh, N. A. Nanostraws for direct fluidic intracellular access. Nano Lett. 12, 3881–3886 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Golshadi, M., Wright, L. K., Dickerson, I. M. & Schrlau, M. G. High-efficiency gene transfection of cells through carbon nanotube arrays. Small 12, 3014–3020 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Universal intracellular biomolecule delivery with precise dosage control. Sci. Adv. https://doi.org/10.1126/sciadv.aat8131 (2018).

  • Singhal, R. et al. Multifunctional carbon-nanotube cellular endoscopes. Nat. Nanotechnol. 6, 57–64 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, W. et al. Nanofountain probe electroporation (NFP-E) of single cells. Nano Lett. 13, 2448–2457 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nathamgari, S. S. P. et al. Nanofountain probe electroporation enables versatile single-cell intracellular delivery and investigation of postpulse electropore dynamics. Small https://doi.org/10.1002/smll.202002616 (2020).

  • Cao, Y. et al. Nontoxic nanopore electroporation for effective intracellular delivery of biological macromolecules. Proc. Natl Acad. Sci. USA 116, 7899–7904 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. Nanopore-mediated protein delivery enabling three-color single-molecule tracking in living cells. Proc. Natl Acad. Sci. USA 118, e2012229118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laforge, F. O., Carpino, J., Rotenberg, S. A. & Mirkin, M. V. Electrochemical attosyringe. Proc. Natl Acad. Sci. USA 104, 11895–11900 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shekaramiz, E., Varadarajalu, G., Day, P. J. & Wickramasinghe, H. K. Integrated electrowetting nanoinjector for single cell transfection. Sci. Rep. https://doi.org/10.1038/srep29051 (2016).

  • Elnathan, R., Tay, A., Voelcker, N. H. & Chiappini, C. The start-ups taking nanoneedles into the clinic. Nat. Nanotechnol. https://doi.org/10.1038/s41565-022-01158-5 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Elnathan, R. et al. Biointerface design for vertical nanoprobes. Nat. Rev. Mater. 7, 953–973 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Chiappini, C. et al. Tutorial: using nanoneedles for intracellular delivery. Nat. Protoc. 16, 4539–4563 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Yoh, H. Z. et al. Polymeric nanoneedle arrays mediate stiffness-independent intracellular delivery. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202104828 (2021).

  • Shokouhi, A. R. et al. Engineering efficient CAR-T cells via electroactive nanoinjection. Adv. Mater. 35, e2304122 (2023).

    PubMed 

    Google Scholar
     

  • Shokouhi, A.-R. et al. Electroactive nanoinjection platform for intracellular delivery and gene silencing. J. Nanobiotechnol. 21, 273 (2023).

    CAS 

    Google Scholar
     

  • Shigyou, K. et al. Geometrical characterization of glass nanopipettes with sub-10 nm pore diameter by transmission electron microscopy. Anal. Chem. 92, 15388–15393 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Varongchayakul, N., Song, J., Meller, A. & Grinstaff, M. W. Single-molecule protein sensing in a nanopore: a tutorial. Chem. Soc. Rev. 47, 8512–8524 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leitao, S. M. et al. Spatially multiplexed single-molecule translocations through a nanopore at controlled speeds. Nat. Nanotechnol. 18, 1078–1084 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hennig, S. et al. Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes. Nano Lett. 15, 1374–1381 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Simonis, M., Hubner, W., Wilking, A., Huser, T. & Hennig, S. Survival rate of eukaryotic cells following electrophoretic nanoinjection. Sci. Rep. 7, 41277 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simonis, M. et al. MoNa—a cost-efficient, portable system for the nanoinjection of living cells. Sci. Rep. 9, 5480 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adam Seger, R. et al. Voltage controlled nano-injection system for single-cell surgery. Nanoscale 4, 5843–5846, (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raveendran, M., Lee, A. J., Wälti, C. & Actis, P. Analysis of 2D DNA origami with nanopipettes. ChemElectroChem 5, 3014–3020 (2018).

    CAS 

    Google Scholar
     

  • Chau, C. C., Radford, S. E., Hewitt, E. W. & Actis, P. Macromolecular crowding enhances the detection of DNA and proteins by a solid-state nanopore. Nano Lett. 20, 5553–5561 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raveendran, M., Leach, A. R., Hopes, T., Aspden, J. L. & Actis, P. Ribosome fingerprinting with a solid-state nanopore. ACS Sens. 5, 3533–3539 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raveendran, M., Lee, A. J., Sharma, R., Wälti, C. & Actis, P. Rational design of DNA nanostructures for single molecule biosensing. Nat. Commun. 11, 4384 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chau, C. et al. Probing RNA conformations using a polymer–electrolyte solid-state nanopore. ACS Nano 16, 20075–20085 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Confederat, S., Sandei, I., Mohanan, G., Wälti, C. & Actis, P. Nanopore fingerprinting of supramolecular DNA nanostructures. Biophys. J. 121, 4882–4891 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marcuccio, F. et al. Mechanistic study of the conductance and enhanced single-molecule detection in a polymer–electrolyte nanopore. ACS Nanosci. Au 3, 172–181 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Confederat, S. et al. Next-generation nanopore sensors based on conductive pulse sensing for enhanced detection of nanoparticles. Small https://doi.org/10.1002/smll.202305186 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, C., Huang, K., Siepser, N. P. & Baker, L. A. Scanning ion conductance microscopy. Chem. Rev. https://doi.org/10.1021/acs.chemrev.0c00962 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Page, A., Perry, D. & Unwin, P. R. Multifunctional scanning ion conductance microscopy. Proc. R. Soc. A. 473, 20160889 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novak, P. et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat. Methods 6, 279–281 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marcuccio, F. et al. Single-cell nanobiopsy enables multigenerational longitudinal transcriptomics of cancer cells. Sci. Adv. 10, eadl0515 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, N. J. & Hinner, M. J. Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Methods Mol. Biol. https://doi.org/10.1007/978-1-4939-2272-7_3 (2015).

  • Aramesh, M. et al. Localized detection of ions and biomolecules with a force-controlled scanning nanopore microscope. Nat. Nanotechnol. 14, 791–798 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Cho, S. W., Lee, J. Y., Carroll, D., Kim, J. S. & Lee, J. H. Heritable gene knockout in caenorhabditis elegans by direct injection of Cas9–sgRNA ribonucleoproteins. Genetics 195, 1177–1180 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaverra-Rodriguez, D. et al. Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing. Nat. Commun. 9, 3008 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kreis, T. E. & Birchmeier, W. Microinjection of fluorescently labeled proteins into living cells with emphasis on cytoskeletal proteins. Int. Rev. Cytol. https://doi.org/10.1016/s0074-7696(08)61005-0 (1982).

  • Keppeke, G., Andrade, L. E. C., Grieshaber, S. S. & Chan, E. K. L. Microinjection of specific anti-IMPDH2 antibodies induces disassembly of cytoplasmic rods/rings that are primarily stationary and stable structures. Cell Biosci. 5, 1 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixon, C., Platani, M., Makarov, A. & Schirmer, E. Microinjection of antibodies targeting the lamin A/C histone-binding site blocks mitotic entry and reveals separate chromatin interactions with HP1, CenpB and PML. Cells 6, 9 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobson, J. et al. Inducing protein aggregation by extensional flow. Proc. Natl Acad. Sci. USA 114, 4673–4678 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartesaghi, A., Matthies, D., Banerjee, S., Merk, A. & Subramaniam, S. Structure of β-galactosidase at 3.2-A resolution obtained by cryo-electron microscopy. Proc. Natl Acad. Sci. USA 111, 11709–11714 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Juers, D. H., Matthews, B. W. & Huber, R. E. LacZ β-galactosidase: structure and function of an enzyme of historical and molecular biological importance. Protein Sci. 21, 1792–1807 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X., Jiang, Y., Chong, S. & Walt, D. R. Bottom-up single-molecule strategy for understanding subunit function of tetrameric β-galactosidase. Proc. Natl Acad. Sci. USA 115, 8346–8351 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hazel, A. L. & Pedley, T. J. Vascular endothelial cells minimize the total force on their nuclei. Biophys. J. 78, 47–54 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doura, T. et al. Detection of LacZ-positive cells in living tissue with single-cell resolution. Angew. Chem. Int. Ed. 55, 9620–9624 (2016).

    CAS 

    Google Scholar
     

  • Iadanza, M. G., Jackson, M. P., Hewitt, E. W., Ranson, N. A. & Radford, S. E. A new era for understanding amyloid structures and disease. Nat. Rev. Mol. Cell Biol. 19, 755–773 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Zong, W. et al. Synthetic intracellular environments: from basic science to applications. Anal. Chem. 95, 535–549 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Nishizawa, K. et al. Universal glass-forming behavior of in vitro and living cytoplasm. Sci. Rep. 7, 15143 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smeets, R. M. M. et al. Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett. 6, 89–95 (2005).

    ADS 

    Google Scholar
     

  • Kesselheim, S., Müller, W. & Holm, C. Origin of current blockades in nanopore translocation experiments. Phys. Rev. Lett. 112, 018101 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • Huang, J. A. et al. On-demand intracellular delivery of single particles in single cells by 3D hollow nanoelectrodes. Nano Lett. 19, 722–731 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurz, V., Tanaka, T. & Timp, G. Single cell transfection with single molecule resolution using a synthetic nanopore. Nano Lett. 14, 604–611 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pandey, P., Sesena-Rubfiaro, A., Khatri, S. & He, J. Development of multifunctional nanopipettes for controlled intracellular delivery and single-entity detection. Faraday Discuss. 233, 315–335 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stefanis, L.- Synuclein in Parkinson’s Disease. Cold Spring Harb. Perspect. Med. 2, a009399–a009399 (2011).


    Google Scholar
     

  • Fusco, G. et al. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science 358, 1440–1443 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cascella, R. et al. The release of toxic oligomers from α-synuclein fibrils induces dysfunction in neuronal cells. Nat. Commun. 12, 1814 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sang, J. C. et al. Super-resolution imaging reveals α-synuclein seeded aggregation in SH-SY5Y cells. Commun. Biol. 4, 613 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahul-Mellier, A.-L. et al. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc. Natl Acad. Sci. USA 117, 4971–4982 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao, X. et al. Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353, aah3374 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheres, S. H. W., Ryskeldi-Falcon, B. & Goedert, M. Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Nature 621, 701–710 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wells-Holland, C. & Elfick, A. Transfection reflections: fit-for-purpose delivery of nucleic acids. Nat. Rev. Mol. Cell Biol. 24, 771–772 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Maffeo, C. & Aksimentiev, A. MrDNA: a multi-resolution model for predicting the structure and dynamics of DNA systems. Nucleic Acids Res. 48, 5135–5146 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Comer, J. & Aksimentiev, A. Predicting the DNA sequence dependence of nanopore ion current using atomic-resolution Brownian dynamics. J. Phys. Chem. C 116, 3376–3393 (2012).

    CAS 

    Google Scholar
     

  • Chen, K. et al. Super-resolution detection of DNA nanostructures using a nanopore. Adv. Mater. 35, e2207434 (2023).

    PubMed 

    Google Scholar
     

  • Wilson, J., Sarthak, K., Si, W., Gao, L. & Aksimentiev, A. Rapid and accurate determination of nanopore ionic current using a steric exclusion model. ACS Sens. 4, 634–644 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar