Search
Close this search box.

Simulated microgravity improves maturation of cardiomyocytes derived from human induced pluripotent stem cells – Scientific Reports

  • Chong, J. J. & Murry, C. E. Cardiac regeneration using pluripotent stem cells–progression to large animal models. Stem Cell Res. 13, 654–665 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawamura, M. et al. Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126, S29–S37 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campostrini, G., Windt, L. M., van Meer, B. J., Bellin, M. & Mummery, C. L. Correction to: Cardiac tissues from stem cells: New routes to maturation and cardiac regeneration. Circ. Res. 129, 775–801 (2021).

    Article 

    Google Scholar
     

  • Becker, J. L. & Souza, G. R. Using space-based investigations to inform cancer research on Earth. Nat. Rev. Cancer 13, 315–327 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barzegari, A. & Saei, A. A. An update to space biomedical research: Tissue engineering in microgravity bioreactors. BioImpacts 2, 23–32 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vunjak-Novakovic, G., Searby, N., De Luis, J. & Freed, L. E. Microgravity studies of cells and tissues. Ann. N. Y. Acad. Sci. 974, 504–517 (2002).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ingber, D. How cells (might) sense microgravity. FASEB J. 13(Suppl), S3–S15 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Jha, R. et al. Simulated microgravity and 3D culture enhance induction, viability, proliferation and differentiation of cardiac progenitors from human pluripotent stem cells. Sci. Rep. 6, 30956 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rampoldi, A. et al. Space microgravity improves proliferation of human iPSC-derived cardiomyocytes. Stem Cell Rep. 17, 2272–2285 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hwang, H. et al. Space microgravity increases expression of genes associated with proliferation and differentiation in human cardiac spheres. NPJ Microgravity 9, 88 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baio, J. et al. Cardiovascular progenitor cells cultured aboard the International Space Station exhibit altered developmental and functional properties. NPJ Microgravity 4, 13 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wnorowski, A. et al. Effects of spaceflight on human induced pluripotent stem cell-derived cardiomyocyte structure and function. Stem Cell Rep. 13, 960–969 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Espinosa-Jeffrey, A. et al. Simulated microgravity enhances oligodendrocyte mitochondrial function and lipid metabolism. J. Neurosci. Res. 94, 1434–1450 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akins, R. E., Schroedl, N. A., Gonda, S. R. & Hartzell, C. R. Neonatal rat heart cells cultured in simulated microgravity. In Vitro Cell. Dev. Biol. Anim. 33, 337–343 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pardo, S. J. et al. Simulated microgravity using the Random Positioning Machine inhibits differentiation and alters gene expression profiles of 2T3 preosteoblasts. Am. J. Physiol. Cell. Physiol. 288, C1211–C1221 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Loon, J. J. Some history and use of the random positioning machine, RPM, in gravity related research. Adv. Space Res. 39, 1161–1165 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 1015–1024 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lucchesi, B. R. Role of calcium on excitation-contraction coupling in cardiac and vascular smooth muscle. Circulation 80, IV1–IV13 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Winegrad, S. The possible role of calcium in excitation-contraction coupling of heart muscle. Circulation 24, 523–529 (1961).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai, L. & Qiu, H. The physiological and pathological roles of mitochondrial calcium uptake in heart. Int. J. Mol. Sci. 21, 7689 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strimaityte, D. et al. Contractility and calcium transient maturation in the human iPSC-derived cardiac microfibers. ACS Appl. Mater. Interfaces 14, 35376–35388 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lundy, S. D., Zhu, W. Z., Regnier, M. & Laflamme, M. A. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 22, 1991–2002 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gentillon, C. et al. Targeting HIF-1α in combination with PPARα activation and postnatal factors promotes the metabolic maturation of human induced pluripotent stem cell-derived cardiomyocytes. J. Mol. Cell. Cardiol. 132, 120–135 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Funakoshi, S. et al. Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells. Nat. Commun. 12, 3155 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, M., Jang, Y., Kim, S. J. & Park, Y. Cyclic Stretching induces maturation of human-induced pluripotent stem cell-derived cardiomyocytes through nuclear-mechanotransduction. Tissue Eng. Regen. Med. 19, 781–792 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bray, M. A. et al. Nuclear morphology and deformation in engineered cardiac myocytes and tissues. Biomaterials 31, 5143–5150 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tu, C., Chao, B. S. & Wu, J. C. Strategies for improving the maturity of human induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 123, 512–514 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, C. Y. et al. Enhancement of human iPSC-derived cardiomyocyte maturation by chemical conditioning in a 3D environment. J. Mol. Cell. Cardiol. 138, 1–11 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, D. et al. Metabolic maturation of human pluripotent stem cell-derived cardiomyocytes by inhibition of HIF1alpha and LDHA. Circ. Res. 123, 1066–1079 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Correia, C. et al. 3D aggregate culture improves metabolic maturation of human pluripotent stem cell derived cardiomyocytes. Biotechnol. Bioeng. 115, 630–644 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Low, L. A. & Giulianotti, M. A. Tissue chips in space: Modeling human diseases in microgravity. Pharm. Res. 37, 8 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shelhamer, M. et al. Selected discoveries from human research in space that are relevant to human health on Earth. NPJ Microgravity 6, 5 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott, J. M., Stoudemire, J., Dolan, L. & Downs, M. Leveraging spaceflight to advance cardiovascular research on earth. Circ. Res. 130, 942–957 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grimm, D. et al. The effects of microgravity on differentiation and cell growth in stem cells and cancer stem cells. Stem Cells Transl. Med. 9, 882–894 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hwang, Y. S. et al. The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering. Biomaterials 30, 499–507 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pao, S. I. et al. Effect of microgravity on the mesenchymal stem cell characteristics of limbal fibroblasts. J. Chin. Med. Assoc. 80, 595–607 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, P. et al. Feasibility, potency, and safety of growing human mesenchymal stem cells in space for clinical application. NPJ Microgravity 6, 16 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential. Biomaterials 41, 15–25 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Talbot, N. C., Caperna, T. J., Blomberg, L., Graninger, P. G. & Stodieck, L. S. The effects of space flight and microgravity on the growth and differentiation of PICM-19 pig liver stem cells. In Vitro Cell Dev. Biol. Anim. 46, 502–515 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Freed, L. E. & Vunjak-Novakovic, G. Spaceflight bioreactor studies of cells and tissues. Adv. Space Biol. Med. 8, 177–195 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Spaceflight promoted myocardial differentiation of induced pluripotent stem cells: Results from Tianzhou-1 space mission. Stem Cells Dev. 28, 357–360 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mulavara, A. P. et al. Physiological and functional alterations after spaceflight and bed rest. Med. Sci. Sports Exerc. 50, 1961–1980 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Connor, M. K. & Hood, D. A. Effect of microgravity on the expression of mitochondrial enzymes in rat cardiac and skeletal muscles. J. Appl. Physiol. 1985(84), 593–598 (1998).

    Article 

    Google Scholar
     

  • Feger, B. J. et al. Microgravity induces proteomics changes involved in endoplasmic reticulum stress and mitochondrial protection. Sci. Rep. 6, 34091 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Velden, J., de Jong, J. W., Owen, V. J., Burton, P. B. & Stienen, G. J. Effect of protein kinase A on calcium sensitivity of force and its sarcomere length dependence in human cardiomyocytes. Cardiovasc. Res. 46, 487–495 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Chan, Y. C. et al. Electrical stimulation promotes maturation of cardiomyocytes derived from human embryonic stem cells. J. Cardiovasc. Transl. Res. 6, 989–999 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, J., Wu, Q., Xia, Y., Wagner, M. B. & Xu, C. Cell alignment induced by anisotropic electrospun fibrous scaffolds alone has limited effect on cardiomyocyte maturation. Stem Cell Res. 16, 740–750 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forghani, P. et al. Carfilzomib treatment causes molecular and functional alterations of human induced pluripotent stem cell-derived cardiomyocytes. J. Am. Heart Assoc. 10, e022247 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latest Intelligence