Search
Close this search box.

Silver and gold nanoparticles as a novel approach to fight Sarcoptic mange in rabbits – Scientific Reports

  • Sharun, K., Anjana, S., Sidhique, S. A. & Panikkassery, S. Treatment of Sarcoptic mange infestation in rabbits with long acting injectable ivermectin. J. Parasit. Dis. 43(4), 733–736. https://doi.org/10.1007/s12639-019-01137-z (2019).

    Article 

    Google Scholar
     

  • Gould, D. Prevention, control, and treatment of scabies. Nurs. Stand. 25(9), 42–46 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Arul Prakash, M., Soundararajan, C., Nagarajan, K., Tensingh Gnanaraj, P. & Ramesh Saravanakumar, V. Sarcoptic mange infestation in rabbits in an organized farm at Tamil Nadu. J. Parasit. Dis. 41(2), 429–432. https://doi.org/10.1007/s12639-016-0821-2 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hafsa, A., Salma, H., Senbill, H., Basyony, M. M. & Hassan, A. A. Amelioration of sarcoptic mange-induced oxidative stress and growth performance in ivermectin-treated growing rabbits using turmeric extract supplementation. Animals 11(10), 2984. https://doi.org/10.3390/ani11102984 (2021).

    Article 

    Google Scholar
     

  • Ulutas, B., Voyvoda, H., Bayramli, G. & Karagenc, T. Efficacy of topical administration of eprinomectin for treatment of ear mite infestation in six rabbits. Vet. Dermatol. 16, 334–337 (2005).

    Article 

    Google Scholar
     

  • GabAllh, M. S., El-Mashad, A. E., Amin, A. A. & Darweish, M. M. Pathological studies on effects of ivermectin on male and female rabbits. Benha Vet. Med. J. 32, 104–112 (2017).

    Article 

    Google Scholar
     

  • Khezerlou, A., Alizadeh-Sani, M., Azizi-Lalabadi, M. & Ehsani, A. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites, and viruses. Microb. Pathog. 123, 505–526 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Elgendy, M. Y. et al. Antibacterial activity of silver nanoparticles against antibiotic resistant Aeromonas veronii infections in Nile tilapia, Oreochromis niloticus (L), in vitro and in vivo assay. Aquac. Res. 53(3), 901–920 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Abu-Elala, N. M., Shaalan, M., Ali, S. E. & Younis, N. A. Immune responses and protective efficacy of diet supplementation with selenium nanoparticles against cadmium toxicity in Oreochromis niloticus. Aquac. Res. 52(8), 3677–3686 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mahboub, H. H. et al. Silica nanoparticles are novel aqueous additive mitigating heavy metals toxicity and improving the health of African catfish, Clarias gariepinus. Aquat. Toxicol. 249, 106238 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Adeyemi, O. S. et al. Metal nanoparticles restrict the growth of protozoan parasites. Artif. Cells Nanomed. Biotechnol. 46(sup3), S86–S94 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ullah, I. et al. Comparative study on the antileishmanial activities of chemically and biologically synthesized silver nanoparticles (AgNPs). 3 Biotech 8(2), 98 (2018).

    Article 

    Google Scholar
     

  • Nafari, A. et al. Nanoparticles: New agents toward treatment of leishmaniasis. Parasite Epidemiol. Control 10, e00156 (2020).

    Article 

    Google Scholar
     

  • Benelli, G. Mode of action of nanoparticles against insects. Environ. Sci. Pollut. Res. 25(13), 12329–12341 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Benelli, G. Gold nanoparticles–against parasites and insect vectors. Acta Trop. 178, 73–80 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pimentel-Acosta, C. A. et al. Efficacy of silver nanoparticles against the adults and eggs of monogenean parasites of fish. Parasitol. Res. 118(6), 1741–1749 (2019).

    Article 

    Google Scholar
     

  • Shaalan, M., Sellyei, B., El-Matbouli, M. & Székely, C. Efficacy of silver nanoparticles to control flavobacteriosis caused by Flavobacterium johnsoniae in common carp Cyprinus carpio. Dis. Aquat. Org. 137(3), 175–183 (2020).

    Article 

    Google Scholar
     

  • Hassanen, E. I., Korany, R. M. S. & Bakeer, A. M. Cisplatin-conjugated gold nanoparticles-based drug delivery system for targeting hepatic tumors. J. Biochem. Mol. Toxicol. 35(5), e22722. https://doi.org/10.1002/jbt.22722 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Abdelsalam, M. et al. Effect of silver nanoparticle administration on productive performance, blood parameters, antioxidative status, and silver residues in growing rabbits under hot climate. Animals 9(10), 845. https://doi.org/10.3390/ani9100845 (2019).

    Article 

    Google Scholar
     

  • Glazer, E. S. et al. Biodistribution and acute toxicity of naked gold nanoparticles in a rabbit hepatic tumor model. Nanotoxicology 5(4), 459–468 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Casais, R. et al. Primary and secondary experimental infestation of rabbits (Oryctolagus cuniculus) with Sarcoptes scabiei from a wild rabbit: Factors determining resistance to reinfestation. Vet. Parasitol. 203(1–2), 173–183 (2014).

    Article 

    Google Scholar
     

  • Singh, S. K. et al. Therapeutic effects of oral fluralaner in pet rabbits with severe sarcoptic mange (Sarcoptes scabiei). Vet. Parasitol. 304, 109693. https://doi.org/10.1016/j.vetpar.2022.109693 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Elshahawy, I., El-Goniemy, A. & Ali, E. S. R. A. A. Epidemiological survey on mange mite of rabbits in the southern region of Egypt. Sains Malays. 5(5), 745–751 (2016).


    Google Scholar
     

  • Flecknell, P. Laboratory Animal Anesthesia (Academic Press, 2015).


    Google Scholar
     

  • Flynn, R. J. Parasites of Laboratory Animals 448–463 (Iowa State University Press, 1973).


    Google Scholar
     

  • Suckow, M. A., Brammer, D. W., Rush, H. G. & Chrisp, C. E. Biology and diseases of rabbits. In Laboratory Animal Medicine (eds Fox, J. G. et al.) 349–350 (Elsevier, 2002).


    Google Scholar
     

  • Walton, S. F., Currie, B. J. & Kemp, D. J. A DNA fingerprinting system for the ectoparasite Sarcoptes scabiei. Mol. Biochem. Parasitol. 85, 187–196 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Walton, S. F. et al. Genetic epidemiology of Sarcoptes scabiei (Acari: Sarcoptidae) in northern Australia. Int. J. Parasitol. 34, 839–849 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Ali, K. M., Hassan, E. A., Abuowarda, M. M., Mahmoud, M. A. & Torad, F. A. Bilateral panophthalmia as a late sequel of leishmaniasis in dogs. Pak. Vet. J. 41(1), 13–18 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hegab, A. A. et al. Screening and phylogenetic characterization of tick-borne pathogens in a population of dogs and associated ticks in Egypt. Parasites Vectors 15(1), 1–15 (2022).

    Article 

    Google Scholar
     

  • Bancroft, J. & Gamble, M. Theory and practice of histological techniques. In Churchill Livingstone (ed. Bancroft, J.) (Elsevier, 2013).


    Google Scholar
     

  • Espinosa, J. et al. Histopathology, microbiology and the inflammatory process associated with Sarcoptes scabiei infection in the Iberian ibex, Capra pyrenaica. Parasites Vectors 10, 596. https://doi.org/10.1186/s13071-017-2542-5 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hassanen, E. I., Morsy, E. M., Hussien, A. M., Ibrahim, M. A. & Farroh, K. Y. The effect of different concentrations of gold nanoparticles on growth performance, toxicopathological and immunological parameters of broiler chickens. Biosci. Rep. https://doi.org/10.1042/BSR20194296 (2020).

  • Sajid, M. S., Naeem, M. A., Kausar, A., Jawad-Ul-Hassan, M. & Saleemi, M. K. Sarcoptes scabiei (Acari: Sarcoptidae) infestation in rabbits (Oryctolagus cuniculus): A case study. Rev. Colomb. Entomol. 43(1), 51–54 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Grahofer, A., Bannoehr, J., Nathues, H. & Roosje, P. Sarcoptes infestation in two miniature pigs with zoonotic transmission—A case report. BMC Vet. Res. 14, 91. https://doi.org/10.1186/s12917-018-1420-5 (2018).

    Article 

    Google Scholar
     

  • Shelley, F. W. & Currie, B. J. Problems in diagnosing scabies, a global disease in human and animal populations. Clin. Microbiol. Rev. 20, 268–279 (2007).

    Article 

    Google Scholar
     

  • Naz, S., Rizvi, D. A., Javaid, A., Ismail, M. & Chauhdry, F. R. Validation of PCR assay for identification of Sarcoptes scabiei var. hominis. Iran. J. Parasitol. 8, 437–440 (2013).


    Google Scholar
     

  • Hoppmann, E. & Barron, W. H. Ferret and rabbit dermatology. J. Exotic. Pet Med. 16, 225–237 (2007).

    Article 

    Google Scholar
     

  • Kurtdede, A. et al. Use of selamectin for the treatment of psoroptic and sarcoptic mite infestation in rabbits. Vet. Dermatol. 18, 18–22 (2007).

    Article 

    Google Scholar
     

  • Voyvoda, H., Ulutas, B., Eren, H., Karagenc, T. & Bayramli, G. Use of doramectin for treatment of sarcoptic mange in five Angora rabbits. Vet. Dermatol. 16(4), 285–288 (2005).

    Article 

    Google Scholar
     

  • Arlian, L. G. & Morgan, M. S. A review of Sarcoptes scabiei: Past, present, and future. Parasites Vectors 10(1), 297. https://doi.org/10.1186/s13071-017-2234-1 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Abdelaziz, E., Elbahy, N., El-Bahrawy, A., ElKhatam, A. & AbouLaila, M. Prevalence, hematological, serum biochemical, histopathology, and molecular characterization of Sarcoptes scabiei in naturally infected rabbits from Minoufiya Governorate, Egypt. Vet. Parasitol. Reg. Stud. Rep. 36, 100788 (2022).


    Google Scholar
     

  • Ismail, S., Mohamed, G., Amer, A. & Amer, M. Comparative killing activity of different nanoparticles and nanocomposites based on Dermanyssus gallinae. Nano Biomed. Eng. 12(4), 338–350 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Korghond, G. T., Sahebzadeh, N., Allahyari, H. & Ramroodi, S. Acute toxicity and sublethal effects of metal oxide nanoparticles against the bulb mite. Syst. Appl. Acarol. 26(4), 788–800 (2021).


    Google Scholar
     

  • Lee, S. M., Song, K. C. & Lee, B. S. Antibacterial activity of silver nanoparticles prepared by a chemical reduction method. Korean J. Chem. Eng. 27, 688–692 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Sobczak-Kupiec, A., Malina, D., Zimowska, M. & Wzorek, Z. Characterization of gold nanoparticles for various medical applications. Dig. J. Nanomater. Bios 6(2), 803–808 (2011).


    Google Scholar
     

  • Dutta, P. P. et al. Antimalarial silver and gold nanoparticles: Green synthesis, characterization, and in vitro study. Biomed. Pharmacother. 91, 567–580 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Shin, S. H. & Ye, M. K. The effect of nano-silver on allergic rhinitis model in mice. Clin. Exp. Otorhinolaryngol. 5(4), 222–227 (2012).

    Article 

    Google Scholar
     

  • Rogers, K. R. et al. Characterization of engineered nanoparticles in commercially available spray disinfectant products advertised to contain colloidal silver. Sci. Total Environ. 619–620, 1375–1384 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Comino-Sanz, I. M., López-Franco, M. D., Castro, B. & Pancorbo-Hidalgo, P. L. The role of antioxidants in wound healing: A review of the current evidence. J. Clin. Med. 10(16), 3558 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Leu, J. G. et al. The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomed. Nanotechnol. Biol. Med. 8(5), 767–775 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Iyer, S. S. & Cheng, G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 32(1), 23–63 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Sabat, R. et al. Biology of interleukin-10. Cytokine Growth Factor Rev. 21(5), 331–344 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Hu, J. et al. Lactobacillus murinus alleviates intestinal ischemia/reperfusion injury through promoting the release of interleukin-10 from M2 macrophages via Toll-like receptor 2 signaling. Microbiome 10(1), 38 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kumar, R. et al. Type I interferons suppress anti-parasitic immunity and can be targeted to improve treatment of visceral leishmaniasis. Cell Rep. 30(8), 2512-2525.e9 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Stancill, J. S., Kasmani, M. Y., Khatun, A., Cui, W. & Corbett, J. A. Cytokine and nitric oxide-dependent gene regulation in islet endocrine and nonendocrine cells. Function (Oxford, England) 3(1), zqab063. https://doi.org/10.1093/function/zqab063 (2021).

    Article 

    Google Scholar
     

  • Li, W. T. et al. Th2 cytokine bias induced by silver nanoparticles in peripheral blood mononuclear cells of common bottlenose dolphins (Tursiops truncatus). Peer J. 6, e5432 (2018).

    Article 

    Google Scholar
     

  • Xiong, J. et al. Multifunctional nanoparticles encapsulating astragalus polysaccharide and gold nanorods in combination with focused ultrasound for the treatment of breast cancer. Int. J. Nanomed. 15, 4151–4169 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kurtjak, M., Vukomanović, M., Kramer, L. & Suvorov, D. Biocompatible nano-gallium/hydroxyapatite nanocomposite with antimicrobial activity. J. Mater. Sci. Mater. Med. 27(11), 170 (2016).

    Article 

    Google Scholar
     

  • Franková, J., Juráňová, J., Kamarád, V., Zálešák, B. & Ulrichová, J. Effect of AgNPs on the human reconstructed epidermis. Interdiscip. Toxicol. 11(4), 289–293 (2018).

    Article 

    Google Scholar
     

  • You, C. et al. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci. Rep. 7(1), 10489 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Xiao, L. et al. TGF-beta 1 induced fibroblast proliferation is mediated by the FGF-2/ERK pathway. Front. Biosci. (Landmark Ed.) 17(7), 2667–2674 (2012).

    Article 

    Google Scholar
     

  • Zhou, J. et al. Simultaneous silencing of TGF-β1 and COX-2 reduces human skin hypertrophic scar through activation of fibroblast apoptosis. Oncotarget 8(46), 80651–80665 (2017).

    Article 

    Google Scholar
     

  • Hassanen, E. I., Kamel, S., Mohamed, W. A., Mansour, H. A. & Mahmoud, M. A. The potential mechanism of histamine-inducing cardiopulmonary inflammation and apoptosis in a novel oral model of rat intoxication. Toxicology 484, 153410 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J. K. et al. Multi-walled carbon nanotubes induce COX-2 and iNOS expression via MAP kinase-dependent and-independent mechanisms in mouse RAW264. 7 macrophages. Part. Fibre Toxicol. 9, 1–11 (2012).

    Article 

    Google Scholar
     

  • Kundu, J. et al. Silicon dioxide nanoparticles induce COX-2 expression through activation of STAT3 signaling pathway in HaCaT cells. Toxicol. In Vitro 52, 235–242 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hassanen, E. I., Abdelrahman, R. E., Aboul-Ella, H., El-Dek, S. & Shaalan, M. Mechanistic approach on the pulmonary oxido-inflammatory stress induced by cobalt ferrite nanoparticles in rats. Biol. Trace Elem. Res. https://doi.org/10.1007/s12011-023-03700-5 (2023).

    Article 

    Google Scholar
     

  • Au, R. Y., Al-Talib, T. K., Au, A. Y., Phan, P. V. & Frondoza, C. G. Avocado soybean unsaponifiable (ASU) suppress TNF-α, IL-1β, COX-2, iNOS gene expression, and prostaglandin E2 and nitric oxide production in particular chondrocytes and monocyte/macrophages. Osteoarthr. Cartil. 15(11), 1249–1255 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Salem, H. M., Ismael, E. & Shaalan, M. Evaluation of the effects of silver nanoparticles against experimentally induced necrotic enteritis in broiler chickens. Int. J. Nanomed. 16, 6783 (2021).

    Article 

    Google Scholar