Gobush, K. et al. Loxodonta africana (amended version of 2021 assessment). The IUCN Red List of Threatened Species 2022: e.T181008073A223031019. https://doi.org/10.2305/IUCN.UK.2022-2.RLTS.T181008073A223031019.en.
Hauenstein, S., Kshatriya, M., Blanc, J., Dormann, C. F. & Beale, C. M. African elephant poaching rates correlate with local poverty, national corruption and global ivory price. Nat. Commun. 10, 2242 (2019).
The status of Africa’s elephants and updates on issues relevant to CITES. In Nineteenth Meeting of the Conference of the Parties 1–14 (Panama City, Panama, 2022).
Wentzel, I. & Hay, A. The Welfare Status of Elephants in Captivity in South Africa. 1–32 (2021).
Kerr, T. J. et al. Detection of Elephant Endotheliotropic Herpesvirus (EEHV) in free-ranging African elephants (Loxodonta Africana) in the Kruger National Park, South Africa. J. Wildl. Dis. 59, 128–137 (2023).
Miller, M. A. et al. Mycobacterium bovis infection in free-ranging African elephants. Emerg. Infect. Dis. 27, 990–992 (2021).
Miller, M. A. et al. Fatal tuberculosis in a free-ranging African elephant and one health implications of human pathogens in wildlife. Front. Vet. Sci. 6, (2019).
Rajbhandari, R. M. et al. Understanding Mycobacterium tuberculosis complex in elephants through a One Health approach: A systematic review. BMC Vet. Res. 18, 262 (2022).
Paudel, S. & Sreevatsan, S. Tuberculosis in elephants: Origins and evidence of interspecies transmission. Tuberculosis 123, 101962 (2020).
Bahrndorff, S., Alemu, T., Alemneh, T. & Lund Nielsen, J. The microbiome of animals: Implications for conservation biology. Int. J. Genom. 2016, e5304028 (2016).
Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: A call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. B Biol. Sci. 286, 20182448 (2019).
Cao, K. et al. Comparison of fecal antimicrobial resistance genes in captive and wild Asian elephants. Antibiotics 12, 859 (2023).
Zhang, C., Chen, J., Wu, Q., Xu, B. & Huang, Z. The gut microbiota of young asian elephants with different milk-containing diets. Animals 13, 916 (2023).
Kandel, S. et al. 16S rRNA gene amplicon profiling of baby and adult captive elephants in Thailand. Microbiol. Resour. Announc. https://doi.org/10.1128/mra.00248-20 (2020).
Bo, T. et al. Mechanism of inulin in colic and gut microbiota of captive Asian elephant. Microbiome 11, 148 (2023).
Moustafa, M. A. M. et al. Anthropogenic interferences lead to gut microbiome dysbiosis in Asian elephants and may alter adaptation processes to surrounding environments. Sci. Rep. 11, 741 (2021).
Keady, M. M. et al. Clinical health issues, reproductive hormones, and metabolic hormones associated with gut microbiome structure in African and Asian elephants. Anim. Microbiome 3, 85 (2021).
Jakeer, S. et al. Metagenomic analysis of the fecal microbiome of an adult elephant reveals the diversity of CAZymes related to lignocellulosic biomass degradation. Symbiosis 81, 209–222 (2020).
Feng, X. et al. Comparison of the gut microbiome and resistome in captive African and Asian elephants on the same diet. Front. Vet. Sci. 10, (2023).
Budd, K. et al. Effects of diet, habitat, and phylogeny on the fecal microbiome of wild African savanna (Loxodonta africana) and forest elephants (L. cyclotis). Ecol. Evol. 10, 5637–5650 (2020).
Zeineldin, M. & Barakat, R. Host-specific signatures of the respiratory microbiota in domestic animals. Res. Vet. Sci. 164, 105037 (2023).
Janda, J. M. & Abbott, S. L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45, 2761–2764 (2007).
Callahan, B. J. et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. bioRxiv https://doi.org/10.1101/392332 (2019).
Johnson, J. S. et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10, 1–11 (2019).
Guo, F., Ju, F., Cai, L. & Zhang, T. Taxonomic precision of different hypervariable regions of 16S rRNA gene and annotation methods for functional bacterial groups in biological wastewater treatment. PLoS One 8, 76185 (2013).
Burke, C. M. & Darling, A. E. A method for high precision sequencing of near full-length 16S rRNA genes on an Illumina MiSeq. PeerJ 4, e2492 (2016).
Karst, S. M. et al. Retrieval of a million high-quality, full-length microbial 16S and 18S rRNA gene sequences without primer bias. Nat. Biotechnol. 36, 190–195 (2018).
Callahan, B. J., Grinevich, D., Thakur, S., Balamotis, M. A. & Yehezkel, T. B. Ultra-accurate microbial amplicon sequencing with synthetic long reads. Microbiome 9, (2021).
Illumina. iSeq 100 System Specification Sheet. https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/iseq100-sequencing-system-spec-sheet-770-2017-020.pdf (2018).
Kazantseva, J., Malv, E., Kaleda, A., Kallastu, A. & Meikas, A. Optimisation of sample storage and DNA extraction for human gut microbiota studies. BMC Microbiol. 21, (2021).
Klinsawat, W. et al. Microbiome variations among age classes and diets of captive Asian elephants (Elephas maximus) in Thailand using full-length 16S rRNA nanopore sequencing. Sci. Rep. 13, 17685 (2023).
Miller, C. S. et al. Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments. PLoS One 8, e56018 (2013).
Pericard, P., Dufresne, Y., Couderc, L., Blanquart, S. & Touzet, H. MATAM: Reconstruction of phylogenetic marker genes from short sequencing reads in metagenomes. Bioinformatics (Oxford, England) 34, 585–591 (2018).
Gruber-Vodicka, H. R., Seah, B. K. B. & Pruesse, E. phyloFlash: Rapid small-subunit rRNA profiling and targeted assembly from metagenomes. mSystems 5, (2020).
Pruesse, E. et al. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).
Shetty, S. A., Kool, J. & Fuentes, S. A tool to assess the mock community samples in 16S rRNA gene-based microbiota profiling studies. Microbiome Res. Rep. 2, 14 (2023).
Petrone, J. R. et al. RESCUE: A validated Nanopore pipeline to classify bacteria through long-read, 16S-ITS-23S rRNA sequencing. Front. Microbiol. 14, 1201064 (2023).
Thorel, M. et al. Conserved core microbiota in managed and free-ranging Loxodonta africana elephants. Front. Microbiol. 14, (2023).
Mach, N., Baranowski, E., Nouvel, L. X. & Citti, C. The airway pathobiome in complex respiratory diseases: A perspective in domestic animals. Front. Cell. Infect. Microbiol. 11, (2021).
de Oliveira, I. M. F. et al. Comparative genomics of Rothia species reveals diversity in novel biosynthetic gene clusters and ecological adaptation to different eukaryotic hosts and host niches. Microb. Genom. 8, mgen000854 (2022).
Szabó, B. G. et al. Composition and changes of blood microbiota in adult patients with community-acquired sepsis: A pilot study from bench to bedside. Front. Cell Infect. Microbiol. 12, 1067476 (2022).
Yang, X. Moraxellaceae. In Encyclopedia of Food Microbiology, 2nd edn. (eds. Batt, C. A. & Tortorello, M. L.) 826–833 (Academic Press, 2014). https://doi.org/10.1016/B978-0-12-384730-0.00441-9.
Adapa, S. et al. Peritonitis due to moraxella osloensis: An emerging pathogen. Case Rep. Nephrol. 2018, e4968371 (2018).
Shoshani, J. Understanding proboscidean evolution: A formidable task. Trends Ecol. Evol. 13, 480–487 (1998).
Peix, A., Ramírez-Bahena, M.-H. & Velázquez, E. The current status on the taxonomy of Pseudomonas revisited: An update. Infect. Genet. Evol. 57, 106–116 (2018).
Peix, A., Ramírez-Bahena, M.-H. & Velázquez, E. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect. Genet. Evol. 9, 1132–1147 (2009).
Moser, C. et al. Immune responses to Pseudomonas aeruginosa biofilm infections. Front. Immunol. 12, 625597 (2021).
Combrink, L. et al. Best practice for wildlife gut microbiome research: A comprehensive review of methodology for 16S rRNA gene investigations. Front. Microbiol. 14, 1092216 (2023).
Furuhashi, H. et al. Effect of storage temperature and flash-freezing on salivary microbiota profiles based on 16S rRNA-targeted sequencing. Eur. J. Oral Sci. 130, e12852 (2022).
Goosen, W. J. et al. The Xpert MTB/RIF Ultra assay detects Mycobacterium tuberculosis complex DNA in white rhinoceros (Ceratotherium simum) and African elephants (Loxodonta africana). Sci. Rep. 10, 14482 (2020).
Michel, A. L. et al. Experimental Mycobacterium bovis infection in three white rhinoceroses (Ceratotherium simum): Susceptibility, clinical and anatomical pathology. PLoS One 12, e0179943 (2017).
Parsons, S. D. C. et al. The kinetics of the humoral and interferon-gamma immune responses to experimental Mycobacterium bovis infection in the White Rhinoceros (Ceratotherium simum). Front. Immunol. 8, 1831 (2017).
Stanton, J. J., Nofs, S. A., Peng, R., Hayward, G. S. & Ling, P. D. Development and validation of quantitative real-time polymerase chain reaction assays to detect elephant endotheliotropic herpesviruses-2, 3, 4, 5, and 6. J. Virol. Methods 186, 73–77 (2012).
Illumina. 16S Metagenomic Sequencing Library Preparation. https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf (2015).
Martin, L. C. Species-Level Profiling of the Maternal Vaginal Bacteriome Using Full-Length 16S rRNA Amplicon Sequencing with Application to Fetal Alcohol Spectrum Disorders (Stellenbosch University, 2023).
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023). https://www.R-project.org.
Andrews, S. FastQC: A Quality Control tool for High Throughput Sequence Data (2010).
Krueger, F., Galore, T. A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. 516, (2015).
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
Lagkouvardos, I., Fischer, S., Kumar, N. & Clavel, T. Rhea: A transparent and modular R pipeline for microbial profiling based on 16S rRNA gene amplicons. PeerJ 5, e2836 (2017).
Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
Shetty, S. A., Lahti, L., de Vos, W. M. & Smidt, H. microbiomeutilities: An R package for utilities to guide in-depth marker gene amplicon data analysis. Ecophysiol. Insights Hum. Intest. Microbiota Single Strains Defined Consort. 95, (2018).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-65841-4