Search
Close this search box.

Sensing and guiding cell-state transitions by using genetically encoded endoribonuclease-mediated microRNA sensors – Nature Biomedical Engineering

  • Mulas, C., Chaigne, A., Smith, A. & Chalut, K. J. Cell state transitions: definitions and challenges. Development https://doi.org/10.1242/dev.199950 (2021).

  • Rukhlenko, O. S. et al. Control of cell state transitions. Nature 609, 975–985 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pera, M. F. & Rossant, J. The exploration of pluripotency space: charting cell state transitions in peri-implantation development. Cell Stem Cell 28, 1896–1906 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183, 1665–1681.e18 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, Y. et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science 375, 681–686 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, Y. et al. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 609, 375–383 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cable, D. M. et al. Cell type-specific inference of differential expression in spatial transcriptomics. Nat. Methods 19, 1076–1087 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trapnell, C. Defining cell types and states with single-cell genomics. Genome Res. https://doi.org/10.1101/gr.190595.115 (2015).

  • Wu, M.-R. et al. A high-throughput screening and computation platform for identifying synthetic promoters with enhanced cell-state specificity (SPECS). Nat. Commun. 10, 2880 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, Y. et al. Programmable RNA sensing for cell monitoring and manipulation. Nature 610, 713–721 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaseniit, K. E. et al. Modular, programmable RNA sensing using ADAR editing in living cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01493-x (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. & Benenson, Y. Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333, 1307–1311 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, V. K., Thakral, D. & Gupta, R. Regulatory noncoding RNAs: potential biomarkers and therapeutic targets in acute myeloid leukemia. Am. J. Blood Res. 11, 504–519 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahlab-Aviv, S., Linial, N. & Linial, M. miRNA combinatorics and its role in cell state control—a probabilistic approach. Front. Mol. Biosci. 8, 772852 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakraborty, M. et al. MicroRNAs organize intrinsic variation into stem cell states. Proc. Natl Acad. Sci. USA 117, 6942–6950 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sood, P., Krek, A., Zavolan, M., Macino, G. & Rajewsky, N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc. Natl Acad. Sci. USA 103, 2746–2751 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozomara, A. & Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siddika, T. & Heinemann, I. U. Bringing microRNAs to light: methods for microRNA quantification and visualization in live cells. Front. Bioeng. Biotechnol. 8, 619583 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, B. D. et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat. Biotechnol. 25, 1457–1467 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gam, J. J., Babb, J. & Weiss, R. A mixed antagonistic/synergistic miRNA repression model enables accurate predictions of multi-input miRNA sensor activity. Nat. Commun. 9, 2430 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. W. et al. A microRNA-inducible CRISPR–Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nat. Cell Biol. 21, 522–530 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Prochazka, L. et al. Synthetic gene circuits for cell state detection and protein tuning in human pluripotent stem cells. Mol. Syst. Biol. 18, e10886 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ordovás, L. et al. Efficient recombinase-mediated cassette exchange in hPSCs to study the hepatocyte lineage reveals AAVS1 locus-mediated transgene inhibition. Stem Cell Reports 5, 918–931 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oyer, J. A., Chu, A., Brar, S. & Turker, M. S. Aberrant epigenetic silencing is triggered by a transient reduction in gene expression. PLoS ONE 4, e4832 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DiAndreth, B., Wauford, N., Hu, E., Palacios, S. & Weiss, R. PERSIST platform provides programmable RNA regulation using CRISPR endoRNases. Nat. Commun. 13, 2582 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mullokandov, G. et al. High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries. Nat. Methods 9, 840–846 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sano, M. et al. Live-cell imaging of microRNA expression with post-transcriptional feedback control. Mol. Ther. Nucleic Acids 26, 547–556 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 15, 261–271 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koh, T.-C., Lee, Y.-Y., Chang, S.-Q. & Nissom, P. M. Identification and expression analysis of miRNAs during batch culture of HEK-293 cells. J. Biotechnol. 140, 149–155 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calvo, S. E., Pagliarini, D. J. & Mootha, V. K. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.0810916106 (2009).

  • Gam, J. J., DiAndreth, B., Jones, R. D., Huh, J. & Weiss, R. A ‘poly-transfection’ method for rapid, one-pot characterization and optimization of genetic systems. Nucleic Acids Res. 47, e106 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu, M.-J. et al. MicroRNA-126 is a prospective target for vascular disease. Neuroimmunol. Neuroinflamm. 5, 10 (2018).

    Article 

    Google Scholar
     

  • Miki, K. et al. Efficient detection and purification of cell populations using synthetic microRNA switches. Cell Stem Cell 16, 699–711 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, K. et al. Robust differentiation of human pluripotent stem cells into endothelial cells via temporal modulation of ETV2 with modified mRNA. Sci. Adv. 6, eaba7606 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng, A. H. M. et al. A comprehensive library of human transcription factors for cell fate engineering. Nat. Biotechnol. 39, 510–519 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kato, Y. et al. Real-time functional imaging for monitoring miR-133 during myogenic differentiation. Int. J. Biochem. Cell Biol. 41, 2225–2231 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lammerts van Bueren, K. & Black, B. L. Regulation of endothelial and hematopoietic development by the ETS transcription factor Etv2. Curr. Opin. Hematol. 19, 199–205 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eliades, A. et al. The hemogenic competence of endothelial progenitors is restricted by Runx1 silencing during embryonic development. Cell Rep. 15, 2185–2199 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, R. et al. Guiding T lymphopoiesis from pluripotent stem cells by defined transcription factors. Cell Res. 30, 21–33 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yzaguirre, A. D., de Bruijn, M. F. T. R. & Speck, N. A. The role of Runx1 in embryonic blood cell formation. Adv. Exp. Med. Biol. 962, 47–64 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, B. et al. Inducible overexpression of RUNX1b/c in human embryonic stem cells blocks early hematopoiesis from mesoderm. J. Mol. Cell Biol. 9, 262–273 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoo, A. S. et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228–231 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anokye-Danso, F. et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8, 376–388 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Onder, T. T. & Daley, G. Q. microRNAs become macro players in somatic cell reprogramming. Genome Med. 3, 40 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, Y. J. et al. Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells. Science 355, eaag1927 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, K. et al. Programmable eukaryotic protein synthesis with RNA sensors by harnessing ADAR. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01534-5 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cella, F., Wroblewska, L., Weiss, R. & Siciliano, V. Engineering protein–protein devices for multilayered regulation of mRNA translation using orthogonal proteases in mammalian cells. Nat. Commun. 9, 4392 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, X. J., Chong, L. S., Kim, M. S. & Elowitz, M. B. Programmable protein circuits in living cells. Science 361, 1252–1258 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, H. & Sun, Y. E. Epigenetic regulation of stem cell differentiation. Pediatr. Res. 59, 21–25 (2006).

    Article 

    Google Scholar
     

  • Cabrera, A. et al. The sound of silence: transgene silencing in mammalian cell engineering. Cell Syst. 13, 950–973 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Guye, P., Li, Y., Wroblewska, L., Duportet, X. & Weiss, R. Rapid, modular and reliable construction of complex mammalian gene circuits. Nucleic Acids Res. 41, e156 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duportet, X. et al. A platform for rapid prototyping of synthetic gene networks in mammalian cells. Nucleic Acids Res. 42, 13440–13451 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, F. & LoTurco, J. A method for stable transgenesis of radial glia lineage in rat neocortex by piggyBac mediated transposition. J. Neurosci. Methods 207, 172–180 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callesen, M. M. et al. Recombinase-mediated cassette exchange (RMCE)-in reporter cell lines as an alternative to the FLP-in system. PLoS ONE 11, e0161471 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yusa, K., Zhou, L., Li, M. A., Bradley, A. & Craig, N. L. A hyperactive piggyBac transposase for mammalian applications. Proc. Natl Acad. Sci. USA 108, 1531–1536 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mátés, L. et al. Molecular evolution of a novel hyperactive sleeping beauty transposase enables robust stable gene transfer in vertebrates. Nat. Genet. 41, 753–761 (2009).

    Article 
    PubMed 

    Google Scholar