Search
Close this search box.

Roadblocks confronting widespread dissemination and deployment of Organs on Chips – Nature Communications

  • Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leung, C. M. et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Prim. 2, 33 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Alver, C. G. et al. SliceChip: a benchtop fluidic platform for organotypic culture and serial assessment of human and rodent pancreatic slices. Lab. Chip 24, 1557–1572 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McDuffie, D. et al. Acrylic-based culture plate format perfusion device to establish liver endothelial–epithelial interface. Lab. Chip 23, 3106–3119 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ronaldson-Bouchard, K. et al. A multi-organ chip with matured tissue niches linked by vascular flow. Nat. Biomed. Eng. 6, 351–371 (2022). Modules of phenotypically mature human heart, liver, bone and skin tissue niches were modularly connected through vascular channel for up to 4 weeks.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vunjak-Novakovic, G., Ronaldson-Bouchard, K. & Radisic, M. Organs-on-a-chip models for biological research. Cell 184, 4597–4611 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y. et al. A Platform for Generation of Chamber-Specific Cardiac Tissues and Disease Modeling. Cell 176, 913–927.e918 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowles, A. C., Ishahak, M. M., Glover, S. J., Correa, D. & Agarwal, A. Evaluating Vascularization of Heterotopic Islet Constructs for Type 1 Diabetes Using an In Vitro Platform. Integr. Biol. 11, 331–341 (2019).


    Google Scholar
     

  • Besser, R. R. et al. Enzymatically crosslinked gelatin-laminin hydrogels for applications in neuromuscular tissue engineering. Biomater. Sci. 8, 591–606 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Besser, R. R. et al. A Chemically Defined Common Medium for Culture of C2C12 Skeletal Muscle and Human Induced Pluripotent Stem Cell Derived Spinal Spheroids. Cell. Mol. Bioeng. 13, 605–619 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ajay, A. K. Functional Drug Screening using Kidney Cells On-A-Chip: Advances in Disease Modeling and Development of Biomarkers. Kidney360 3, 194–198 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010). Seminal lung on a chip demonstration that kickstarted the Organ on Chip momentum from chip developers, startup companies, and funding and regulatory agencies.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dasgupta, Q. et al. A human lung alveolus-on-a-chip model of acute radiation-induced lung injury. Nat. Commun. 14, 6506 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai, H. et al. Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip. Nat. Commun. 13, 1928 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musah, S. et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng. 1, 0069 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Picollet-D’hahan, N., Zuchowska, A., Lemeunier, I. & Le Gac, S. Multiorgan-on-a-Chip: A Systemic Approach To Model and Decipher Inter-Organ Communication. Trends Biotechnol. 39, 788–810 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Y. S. et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc. Natl Acad. Sci. 114, E2293–E2302 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao, T. et al. Microengineered Multi-Organoid System from hiPSCs to Recapitulate Human Liver-Islet Axis in Normal and Type 2 Diabetes. Adv. Sci. 9, 2103495 (2022).

    Article 

    Google Scholar
     

  • Wagner, I. et al. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 13, 3538–3547 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oleaga, C. et al. Long-Term Electrical and Mechanical Function Monitoring of a Human-on-a-Chip System. Adv. Funct. Mater. 29, 1805792 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Shroff, T. et al. Studying metabolism with multi-organ chips: new tools for disease modelling, pharmacokinetics and pharmacodynamics. Open Biol. 12, 210333 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, X.-Y. et al. Generation of vascularized brain organoids to study neurovascular interactions. eLife 11, e76707 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paşca, S. P. Assembling human brain organoids. Science 363, 126–127 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kanton, S. & Paşca, S. P. Human assembloids. Development 149, dev201120 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, S. et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat. Commun. 8, 14584 (2017). A remarkable study that simulates the in vivo female reproductive tract by functional connection of endocrine loops between the ovary, fallopian tube, uterus, cervix and liver modules.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young, R. E. & Huh, D. D. Organ-on-a-chip technology for the study of the female reproductive system. Adv. Drug Deliv. Rev. 173, 461–478 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahajan, G. et al. Vaginal microbiome-host interactions modeled in a human vagina-on-a-chip. Microbiome 10, 201 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, S. N. et al. Organoid microphysiological system preserves pancreatic islet function within 3D matrix. Sci. Adv. 7, eaba5515 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ingber, D. E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 23, 467–491 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Low, L. A. & Tagle, D. A. Organs-on-chips: Progress, challenges, and future directions. Exp. Biol. Med. 242, 1573–1578 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Alassaf, A. et al. Engineering anisotropic cardiac monolayers on microelectrode arrays for non-invasive analyses of electrophysiological properties. Analyst 145, 139–149 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Alassaf, A., Ishahak, M., Bowles, A. & Agarwal, A. Microelectrode Array based Functional Testing of Pancreatic Islet Cells. Micromachines 11, 507 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, C., Peng, Y., Li, H. & Chen, W. Organ-on-a-Chip: A New Paradigm for Drug Development. Trends Pharm. Sci. 42, 119–133 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ewart, L. et al. Performance assessment and economic analysis of a human Liver-Chip for predictive toxicology. Commun. Med. 2, 154 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kroll, K. T. et al. Immune-infiltrated kidney organoid-on-chip model for assessing T cell bispecific antibodies. Proc. Natl Acad. Sci. 120, e2305322120, https://doi.org/10.1073/pnas.2305322120 (2023).

  • Jang, K.-J. et al. Reproducing human and cross-species drug toxicities using a Liver-Chip. Sci. Transl. Med. 11, eaax5516 (2019). Liver-Chip consisting of rat, dog, or human hepatocytes, endothelial cells, Kupffer cells, and stellate cells detected diverse phenotypes of liver toxicity, and species-specific toxicities.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esch, E. W., Bahinski, A. & Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 14, 248–260 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atkins, J. T. et al. Pre-clinical animal models are poor predictors of human toxicities in phase 1 oncology clinical trials. Br. J. Cancer 123, 1496–1501 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall, L. J., Bailey, J., Cassotta, M., Herrmann, K. & Pistollato, F. Poor Translatability of Biomedical Research Using Animals — A Narrative Review. Alternatives Lab. Anim. 51, 102–135 (2023).

    Article 

    Google Scholar
     

  • Pol, S. U. et al. Network-Based Genomic Analysis of Human Oligodendrocyte Progenitor Differentiation. Stem Cell Rep. 9, 710–723 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Peel, S. et al. Introducing an automated high content confocal imaging approach for Organs-on-Chips. Lab Chip 19, 410–421 (2019).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Azizgolshani, H. et al. High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows. Lab Chip 21, 1454–1474 (2021). 96 Organ on Chips representing liver, vascular, gut, and kidney tissues were integrated on a single operating platform with electrical, optical readouts and high content screening capabilities.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fisher, C. R. et al. A High-Throughput, High-Containment Human Primary Epithelial Airway Organ-on-Chip Platform for SARS-CoV-2 Therapeutic Screening. Cells 12, 2639 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palasantzas, V. E. J. M. et al. iPSC-derived organ-on-a-chip models for personalized human genetics and pharmacogenomics studies. Trends Genet. 39, 268–284 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y., Wang, E. Y., Lai, F. B. L., Cheung, K. & Radisic, M. Organs-on-a-chip: a union of tissue engineering and microfabrication. Trends Biotechnol. 41, 410–424 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, D., Mathur, A., Arora, S., Roy, S. & Mahindroo, N. Journey of organ on a chip technology and its role in future healthcare scenario. Appl. Surface Sci. Adv. 9, https://doi.org/10.1016/j.apsadv.2022.100246 (2022).

  • Zhang, B. & Radisic, M. Organ-on-a-chip devices advance to market. Lab Chip 17, 2395–2420 (2017). A comprehensive look at startup activity spurred on academic labortories that were early pioneers in singular and connected multiple Organ on Chip Platforms.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • da Silva, R. G. L. & Blasimme, A. Organ chip research in Europe: players, initiatives, and policies. Front. Bioeng. Biotech. 11, 1237561 (2023).

    Article 

    Google Scholar
     

  • Franzen, N. et al. Impact of organ-on-a-chip technology on pharmaceutical R&D costs. Drug Discov. Today 24, 1720–1724 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Hargrove-Grimes, P., Low, L. A. & Tagle, D. A. Microphysiological Systems: Stakeholder Challenges to Adoption in Drug Development. Cells Tissues Organs 211, 269–281 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Simoens, S. & Huys, I. R&D Costs of New Medicines: A Landscape Analysis. Front. Med. 8, 760762 (2021).

    Article 

    Google Scholar
     

  • Wong, C. H., Siah, K. W. & Lo, A. W. Estimation of clinical trial success rates and related parameters. Biostatistics 20, 273–286 (2019).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Yamaguchi, S., Kaneko, M. & Narukawa, M. Approval success rates of drug candidates based on target, action, modality, application, and their combinations. Clin. Transl. Sci. 14, 1113–1122 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scannell, J. W. et al. Predictive validity in drug discovery: what it is, why it matters and how to improve it. Nat. Rev. Drug Discov. 21, 915–931 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schuhmacher, A. et al. Analysis of pharma R&D productivity – a new perspective needed. Drug Discov. Today 28, 103726 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Collins, F. S. Reengineering translational science: the time is right. Sci. Transl. Med. 3, 90cm17 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adhikary, P. P., Ul Ain, Q., Hocke, A. C. & Hedtrich, S. COVID-19 highlights the model dilemma in biomedical research. Nat. Rev. Mater. 6, 374–376 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blay, V., Tolani, B., Ho, S. P. & Arkin, M. R. High-Throughput Screening: today’s biochemical and cell-based approaches. Drug Discov. Today 25, 1807–1821 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keuper-Navis, M. et al. The application of organ-on-chip models for the prediction of human pharmacokinetic profiles during drug development. Pharmacol. Res. 195, 106853 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koning, J. J. et al. A Multi-Organ-on-Chip Approach to Investigate How Oral Exposure to Metals Can Cause Systemic Toxicity Leading to Langerhans Cell Activation in Skin. Front. Toxicol. 3, 824825 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ishahak, M. et al. Modular Microphysiological System for Modeling of Biologic Barrier Function. Front. Bioeng. Biotech. 8, 581163 (2020).

    Article 

    Google Scholar
     

  • Cong, Y. et al. Drug Toxicity Evaluation Based on Organ-on-a-chip Technology: A Review. Micromachines 11, 381 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zamprogno, P. et al. Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane. Commun. Biol. 4, 168 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sia, S. K. & Whitesides, G. M. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24, 3563–3576 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rein, C., Toner, M. & Sevenler, D. Rapid prototyping for high-pressure microfluidics. Sci. Rep. 13, 1232 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Meer, B. J. et al. Small molecule absorption by PDMS in the context of drug response bioassays. Biochem. Biophys. Res. Commun. 482, 323–328 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shirure, V. S. & George, S. C. Design considerations to minimize the impact of drug absorption in polymer-based organ-on-a-chip platforms. Lab. Chip 17, 681–690 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reese, W. M. et al. Facile Macrocyclic Polyphenol Barrier Coatings for PDMS Microfluidic Devices. Adv. Funct. Mater. 30, 2001274 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Flueckiger, J., Bazargan, V., Stoeber, B. & Cheung, K. C. Characterization of postfabricated parylene C coatings inside PDMS microdevices. Sens. Actuators B Chem. 160, 864–874 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Jung, D. J. et al. A one-stop microfluidic-based lung cancer organoid culture platform for testing drug sensitivity. Lab. Chip 19, 2854–2865 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Becker, H. & Locascio, L. E. Polymer microfluidic devices. Talanta 56, 267–287 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, K., Zhou, J. & Wu, H. Materials for microfluidic chip fabrication. Acc. Chem. Res. 46, 2396–2406 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonçalves, I. M. et al. Recent trends of biomaterials and biosensors for organ-on-chip platforms. Bioprinting 26, e00202 (2022).

    Article 

    Google Scholar
     

  • Schneider, S., Gruner, D., Richter, A. & Loskill, P. Membrane integration into PDMS-free microfluidic platforms for organ-on-chip and analytical chemistry applications. Lab. Chip 21, 1866–1885 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schneider, S. et al. Peristaltic on-chip pump for tunable media circulation and whole blood perfusion in PDMS-free organ-on-chip and Organ-Disc systems. Lab. Chip 21, 3963–3978 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Radisic, M. & Loskill, P. Beyond PDMS and Membranes: New Materials for Organ-on-a-Chip Devices. ACS Biomater. Sci. Eng. 7, 2861–2863 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lenguito, G. et al. Resealable, optically accessible, PDMS-free fluidic platform for ex vivo interrogation of pancreatic islets. Lab. Chip 17, 772–781 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guckenberger, D. J., de Groot, T. E., Wan, A. M., Beebe, D. J. & Young, E. W. Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab. Chip 15, 2364–2378 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leclerc, C. A. et al. Rapid design and prototyping of microfluidic chips via computer numerical control micromilling and anisotropic shrinking of stressed polystyrene sheets. Microfluidics Nanofluidics 25, 12 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Low, L. A., Mummery, C., Berridge, B. R., Austin, C. P. & Tagle, D. A. Organs-on-chips: into the next decade. Nat. Rev. Drug Discov. 20, 345–361 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sood, A., Kumar, A., Gupta, V. K., Kim, C. M. & Han, S. S. Translational Nanomedicines Across Human Reproductive Organs Modeling on Microfluidic Chips: State-of-the-Art and Future Prospects. ACS Biomater. Sci. Eng. 9, 62–84 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Fuchs, S. et al. In-Line Analysis of Organ-on-Chip Systems with Sensors: Integration, Fabrication, Challenges, and Potential. ACS Biomater. Sci. Eng. 7, 2926–2948 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rogal, J., Schlünder, K. & Loskill, P. Developer’s Guide to an Organ-on-Chip Model. ACS Biomater. Sci. Eng. 8, 4643–4647 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishahak, M. et al. Integrated platform for operating and interrogating organs-on-chips. Anal. Methods 11, 5645–5651 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tadenev, A. L. D. & Burgess, R. W. Model validity for preclinical studies in precision medicine: precisely how precise do we need to be. Mamm. Genome 30, 111–122 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steger-Hartmann, T. & Raschke, M. Translating in vitro to in vivo and animal to human. Curr. Opin. Toxicol. 23-24, 6–10 (2020).

    Article 

    Google Scholar
     

  • Patterson, E. A., Whelan, M. P. & Worth, A. P. The role of validation in establishing the scientific credibility of predictive toxicology approaches intended for regulatory application. Comput. Toxicol. 17, 100144 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piergiovanni, M., Mennecozzi, M., Sampani, S. & Whelan, M. Heads on! Designing a qualification framework for organ-on-chip. ALTEX Alternatives Anim. Exp. 41, 320–323 (2024).


    Google Scholar
     

  • Parish, S. T. et al. An evaluation framework for new approach methodologies (NAMs) for human health safety assessment. Regul. Toxicol. Pharm. 112, 104592 (2020).

    Article 

    Google Scholar
     

  • Pamies, D. et al. Recommendations on fit-for-purpose criteria to establish quality management for microphysiological systems and for monitoring their reproducibility. Stem Cell Rep. 19, 604–617 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Baran, S. W. et al. Perspectives on the evaluation and adoption of complex in vitro models in drug development: Workshop with the FDA and the pharmaceutical industry (IQ MPS Affiliate). ALTEX Alternatives Animal Exp. 39, 297–314 (2022). An important report from pharmaceutical industry partners and the FDA on the need to define context of use, and the qualification/validation pathway before widespread adoption of Organs on Chips.

  • Pognan, F. et al. The evolving role of investigative toxicology in the pharmaceutical industry. Nat. Rev. Drug Discov. 22, 317–335 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alonso-Roman, R. et al. Organ-on-chip models for infectious disease research. Nat. Microbiol. 9, 891–904 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar