RLS-associated MEIS transcription factors control distinct processes in human neural stem cells

  • Allen, R. P., Bharmal, M. & Calloway, M. Prevalence and disease burden of primary restless legs syndrome: results of a general population survey in the United States. Mov. Disord. 26, 114–120. https://doi.org/10.1002/mds.23430 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Allen, R. P. et al. Restless legs syndrome/Willis-Ekbom disease diagnostic criteria: updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria–history, rationale, description, and significance. Sleep. Med. 15, 860–873. https://doi.org/10.1016/j.sleep.2014.03.025 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Earley, C. J., Uhl, G. R., Clemens, S. & Ferre, S. Connectome and molecular pharmacological differences in the dopaminergic system in restless legs syndrome (RLS): plastic changes and neuroadaptations that may contribute to augmentation. Sleep. Med. 31, 71–77. https://doi.org/10.1016/j.sleep.2016.06.003 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Schormair, B. et al. Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis. Lancet Neurol. 16, 898–907. https://doi.org/10.1016/S1474-4422(17)30327-7 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schormair Genome-wide meta-analyses of restless legs syndrome yield insights into genetic architecture, disease biology, and risk prediction. Nat. Genet. (2024).

  • Cotney, J. et al. The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment. Nat. Commun. 6, 6404. https://doi.org/10.1038/ncomms7404 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Duboule, D. The rise and fall of hox gene clusters. Development 134, 2549–2560. https://doi.org/10.1242/dev.001065 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spieler, D. et al. Restless legs syndrome-associated intronic common variant in Meis1 alters enhancer function in the developing telencephalon. Genome Res. 24, 592–603. https://doi.org/10.1101/gr.166751.113 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winkelmann, J. et al. Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nat. Genet. 39, 1000–1006. https://doi.org/10.1038/ng2099 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lam, D. D. et al. Intronic elements associated with insomnia and restless legs syndrome exhibit cell-type-specific epigenetic features contributing to MEIS1 regulation. Hum. Mol. Genet. 31, 1733–1746. https://doi.org/10.1093/hmg/ddab355 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, L. et al. MEIS1 intronic risk haplotype associated with restless legs syndrome affects its mRNA and protein expression levels. Hum. Mol. Genet. 18, 1065–1074. https://doi.org/10.1093/hmg/ddn443 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarayloo, F. et al. Mineral absorption is an enriched pathway in a brain region of restless legs syndrome patients with reduced MEIS1 expression. PLoS One. 14, e0225186. https://doi.org/10.1371/journal.pone.0225186 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moskow, J. J., Bullrich, F., Huebner, K., Daar, I. O. & Buchberg, A. M. Meis1, a PBX1-related homeobox gene involved in myeloid leukemia in BXH-2 mice. Mol. Cell. Biol. 15, 5434–5443. https://doi.org/10.1128/mcb.15.10.5434 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dupacova, N., Antosova, B., Paces, J. & Kozmik, Z. Meis homeobox genes control progenitor competence in the retina. Proc. Natl. Acad. Sci. U S A. 118 https://doi.org/10.1073/pnas.2013136118 (2021).

  • Argiropoulos, B., Yung, E. & Humphries, R. K. Unraveling the crucial roles of Meis1 in leukemogenesis and normal hematopoiesis. Genes Dev. 21, 2845–2849. https://doi.org/10.1101/gad.1619407 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Azcoitia, V., Aracil, M., Martinez, A. C. & Torres, M. The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. Dev. Biol. 280, 307–320. https://doi.org/10.1016/j.ydbio.2005.01.004 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delgado, I. et al. Control of mouse limb initiation and antero-posterior patterning by Meis transcription factors. Nat. Commun. 12, 3086. https://doi.org/10.1038/s41467-021-23373-9 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delgado, I. et al. Proximo-distal positional information encoded by an fgf-regulated gradient of homeodomain transcription factors in the vertebrate limb. Sci. Adv. 6, eaaz0742. https://doi.org/10.1126/sciadv.aaz0742 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahmoud, A. I. et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature 497, 249–253. https://doi.org/10.1038/nature12054 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marcos, S. et al. Meis1 coordinates a network of genes implicated in eye development and microphthalmia. Development 142, 3009–. https://doi.org/10.1242/dev.122176 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agoston, Z. et al. Meis2 is a Pax6 co-factor in neurogenesis and dopaminergic periglomerular fate specification in the adult olfactory bulb. Development 141, 28–38. https://doi.org/10.1242/dev.097295 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agoston, Z., Li, N., Haslinger, A., Wizenmann, A. & Schulte, D. Genetic and physical interaction of Meis2, Pax3 and Pax7 during dorsal midbrain development. BMC Dev. Biol. 12, 10. https://doi.org/10.1186/1471-213X-12-10 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agoston, Z. & Schulte, D. Meis2 competes with the Groucho co-repressor Tle4 for binding to Otx2 and specifies tectal fate without induction of a secondary midbrain-hindbrain boundary organizer. Development 136, 3311–3322. https://doi.org/10.1242/dev.037770 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bouilloux, F. et al. Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death. Elife 5 https://doi.org/10.7554/eLife.11627 (2016).

  • Lepko, T. et al. Choroid plexus-derived miR-204 regulates the number of quiescent neural stem cells in the adult brain. EMBO J. 38, e100481. https://doi.org/10.15252/embj.2018100481 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barber, B. A. et al. Dynamic expression of MEIS1 homeoprotein in E14.5 forebrain and differentiated forebrain-derived neural stem cells. Ann. Anat. 195, 431–440. https://doi.org/10.1016/j.aanat.2013.04.005 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Lopez-Delgado, A. C., Delgado, I., Cadenas, V., Sanchez-Cabo, F. & Torres, M. Axial skeleton anterior-posterior patterning is regulated through feedback regulation between Meis transcription factors and retinoic acid. Development 148 https://doi.org/10.1242/dev.193813 (2021).

  • Lai, C. K. et al. Meis2 as a critical player in MN1-induced leukemia. Blood Cancer J. 7, e613. https://doi.org/10.1038/bcj.2017.86 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Machon, O., Masek, J., Machonova, O., Krauss, S. & Kozmik, Z. Meis2 is essential for cranial and cardiac neural crest development. BMC Dev. Biol. 15, 40. https://doi.org/10.1186/s12861-015-0093-6 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhanvadia, R. R. et al. MEIS1 and MEIS2 expression and prostate Cancer progression: a role for HOXB13 binding partners in metastatic disease. Clin. Cancer Res. 24, 3668–3680. https://doi.org/10.1158/1078-0432.CCR-17-3673 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geerts, D., Schilderink, N., Jorritsma, G. & Versteeg, R. The role of the MEIS homeobox genes in neuroblastoma. Cancer Lett. 197, 87–92. https://doi.org/10.1016/s0304-3835(03)00087-9 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Melvin, V. S., Feng, W., Hernandez-Lagunas, L., Artinger, K. B. & Williams, T. A morpholino-based screen to identify novel genes involved in craniofacial morphogenesis. Dev. Dyn. 242, 817–831. https://doi.org/10.1002/dvdy.23969 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oulad-Abdelghani, M. et al. Meis2, a novel mouse pbx-related homeobox gene induced by retinoic acid during differentiation of P19 embryonal carcinoma cells. Dev. Dyn. 210, 173–183. https://doi.org/10.1002/(SICI)1097-0177(199710)210:2<173::AID-AJA9>3.0.CO:2-D (1997).

  • Toresson, H., Parmar, M. & Campbell, K. Expression of Meis and pbx genes and their protein products in the developing telencephalon: implications for regional differentiation. Mech. Dev. 94, 183–187 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821. https://doi.org/10.1126/science.1225829 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588. https://doi.org/10.1038/nature14136 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods. 11, 783–784. https://doi.org/10.1038/nmeth.3047 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Concordet, J. P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245. https://doi.org/10.1093/nar/gky354 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. https://doi.org/10.1038/nbt.4314 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Dimensionality reduction by UMAP reinforces sample heterogeneity analysis in bulk transcriptomic data. Cell. Rep. 36, 109442. https://doi.org/10.1016/j.celrep.2021.109442 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29. https://doi.org/10.1038/75556 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Consortium, G. O. et al. The Gene Ontology knowledgebase in 2023. Genetics 224 https://doi.org/10.1093/genetics/iyad031 (2023).

  • Calipari, E. S. & Ferris, M. J. Amphetamine mechanisms and actions at the dopamine terminal revisited. J. Neurosci. 33, 8923–8925. https://doi.org/10.1523/JNEUROSCI.1033-13.2013 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fienberg, A. A. et al. DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science 281, 838–842. https://doi.org/10.1126/science.281.5378.838 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Toresson, H., Mata de Urquiza, A., Fagerstrom, C., Perlmann, T. & Campbell, K. Retinoids are produced by glia in the lateral ganglionic eminence and regulate striatal neuron differentiation. Development 126, 1317–1326 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pfeufer, A. et al. Genome-wide association study of PR interval. Nat. Genet. 42, 153–159. https://doi.org/10.1038/ng.517 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Penkov, D. et al. Analysis of the DNA-Binding Profile and function of TALE homeoproteins reveals their specialization and specific interactions with hox Genes/Proteins. Cell. Rep. 3, 1321–1333. https://doi.org/10.1016/j.celrep.2013.03.029 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell. 38, 576–589. https://doi.org/10.1016/j.molcel.2010.05.004 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Svingen, T. & Tonissen, K. F. Hox transcription factors and their elusive mammalian gene targets. Heredity (Edinb). 97, 88–96. https://doi.org/10.1038/sj.hdy.6800847 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ronzio, M., Zambelli, F., Dolfini, D., Mantovani, R. & Pavesi, G. Integrating peak colocalization and Motif Enrichment Analysis for the Discovery of Genome-Wide Regulatory Modules and transcription factor recruitment rules. Front. Genet. 11, 72. https://doi.org/10.3389/fgene.2020.00072 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Volkel, S. et al. Transcription factor Sp2 potentiates binding of the TALE homeoproteins Pbx1:Prep1 and the histone-fold domain protein Nf-y to composite genomic sites. J. Biol. Chem. 293, 19250–19262. https://doi.org/10.1074/jbc.RA118.005341 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Longobardi, E. et al. Prep1 (pKnox1)-deficiency leads to spontaneous tumor development in mice and accelerates EmuMyc lymphomagenesis: a tumor suppressor role for Prep1. Mol. Oncol. 4, 126–134. https://doi.org/10.1016/j.molonc.2010.01.001 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferri, A. et al. Sox2 is required for embryonic development of the ventral telencephalon through the activation of the ventral determinants Nkx2.1 and shh. Development 140, 1250–1261. https://doi.org/10.1242/dev.073411 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lefebvre, V., Dumitriu, B., Penzo-Mendez, A., Han, Y. & Pallavi, B. Control of cell fate and differentiation by sry-related high-mobility-group box (Sox) transcription factors. Int. J. Biochem. Cell. Biol. 39, 2195–2214. https://doi.org/10.1016/j.biocel.2007.05.019 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat. Protoc. 8, 2502–2515. https://doi.org/10.1038/nprot.2013.150 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Catoire, H. et al. A direct interaction between two restless legs syndrome predisposing genes: MEIS1 and SKOR1. Sci. Rep. 8, 12173. https://doi.org/10.1038/s41598-018-30665-6 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salminen, A. V., Schandra, N., Schormair, B., Oexle, K. & Winkelmann, J. Therapeutic effectiveness of thalidomide in a patient with treatment-resistant restless legs syndrome. J. Clin. Sleep. Med. 16, 1815–1817. https://doi.org/10.5664/jcsm.8696 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fishilevich, S. et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford). 2017 https://doi.org/10.1093/database/bax028 (2017).

  • Yan, P. et al. Genome-wide R-loop landscapes during cell differentiation and reprogramming. Cell. Rep. 32, 107870. https://doi.org/10.1016/j.celrep.2020.107870 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou, Z., Ohta, T., Oki, S. & ChIP-Atlas 3.0: a data-mining suite to explore chromosome architecture together with large-scale regulome data. Nucleic Acids Res. 52, W45–W53. https://doi.org/10.1093/nar/gkae358 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antosova, B. et al. The Gene Regulatory Network of Lens Induction is Wired through Meis-Dependent Shadow enhancers of Pax6. PLoS Genet. 12, e1006441. https://doi.org/10.1371/journal.pgen.1006441 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Longobardi, E. et al. Biochemistry of the tale transcription factors PREP, MEIS, and PBX in vertebrates. Dev. Dyn. 243, 59–75. https://doi.org/10.1002/dvdy.24016 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bridoux, L. et al. HOX paralogs selectively convert binding of ubiquitous transcription factors into tissue-specific patterns of enhancer activation. PLoS Genet. 16, e1009162. https://doi.org/10.1371/journal.pgen.1009162 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, S. et al. Transcription factor paralogs orchestrate alternative gene regulatory networks by context-dependent cooperation with multiple cofactors. Nat. Commun. 13, 3808. https://doi.org/10.1038/s41467-022-31501-2 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slattery, M. et al. Cofactor binding evokes latent differences in DNA binding specificity between hox proteins. Cell 147, 1270–1282. https://doi.org/10.1016/j.cell.2011.10.053 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, C. P. et al. Meis proteins are major in vivo DNA binding partners for wild-type but not chimeric pbx proteins. Mol. Cell. Biol. 17, 5679–5687 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berthelsen, J., Kilstrup-Nielsen, C., Blasi, F., Mavilio, F. & Zappavigna, V. The subcellular localization of PBX1 and EXD proteins depends on nuclear import and export signals and is modulated by association with PREP1 and HTH. Genes Dev. 13, 946–953. https://doi.org/10.1101/gad.13.8.946 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferretti, E. et al. Segmental expression of Hoxb2 in r4 requires two separate sites that integrate cooperative interactions between Prep1, pbx and hox proteins. Development 127, 155–166 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knoepfler, P. S., Calvo, K. R., Chen, H., Antonarakis, S. E. & Kamps, M. P. Meis1 and pKnox1 bind DNA cooperatively with Pbx1 utilizing an interaction surface disrupted in oncoprotein E2a-Pbx1. Proc. Natl. Acad. Sci. U S A. 94, 14553–14558. https://doi.org/10.1073/pnas.94.26.14553 (1997).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, W. F. et al. AbdB-like hox proteins stabilize DNA binding by the Meis1 homeodomain proteins. Mol. Cell. Biol. 17, 6448–6458. https://doi.org/10.1128/mcb.17.11.6448 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shanmugam, K., Green, N. C., Rambaldi, I., Saragovi, H. U. & Featherstone, M. S. PBX and MEIS as non-DNA-binding partners in trimeric complexes with HOX proteins. Mol. Cell. Biol. 19, 7577–7588. https://doi.org/10.1128/mcb.19.11.7577 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bisaillon, R., Wilhelm, B. T., Krosl, J. & Sauvageau, G. C-terminal domain of MEIS1 converts PKNOX1 (PREP1) into a HOXA9-collaborating oncoprotein. Blood 118, 4682–4689. https://doi.org/10.1182/blood-2011-05-354076 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, H. et al. MEIS C termini harbor transcriptional activation domains that respond to cell signaling. J. Biol. Chem. 280, 10119–10127. https://doi.org/10.1074/jbc.M413963200 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hyman-Walsh, C., Bjerke, G. A. & Wotton, D. An autoinhibitory effect of the homothorax domain of Meis2. FEBS J. 277, 2584–2597. https://doi.org/10.1111/j.1742-464X.2010.07668.x (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, T. M., Williams, M. E. & Innis, J. W. Range of HOX/TALE superclass associations and protein domain requirements for HOXA13:MEIS interaction. Dev. Biol. 277, 457–471. https://doi.org/10.1016/j.ydbio.2004.10.004 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gera, T., Jonas, F., More, R. & Barkai, N. Evolution of binding preferences among whole-genome duplicated transcription factors. Elife 11 https://doi.org/10.7554/eLife.73225 (2022).

  • Mukherjee, K. & Burglin, T. R. Comprehensive analysis of animal TALE homeobox genes: new conserved motifs and cases of accelerated evolution. J. Mol. Evol. 65, 137–153. https://doi.org/10.1007/s00239-006-0023-0 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Ho, T. D., Buchler, N. E. & Gordan, R. Competition for DNA binding between paralogous transcription factors determines their genomic occupancy and regulatory functions. Genome Res. 31, 1216–1229. https://doi.org/10.1101/gr.275145.120 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Majidi, S. P. et al. Chromatin Environment and Cellular Context Specify Compensatory activity of paralogous MEF2 transcription factors. Cell. Rep. 29, 2001–2015. https://doi.org/10.1016/j.celrep.2019.10.033 (2019). e2005.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, N. et al. Divergence in DNA specificity among Paralogous Transcription Factors Contributes to their Differential in vivo binding. Cell. Syst. 6, 470–483. https://doi.org/10.1016/j.cels.2018.02.009 (2018). e478.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gurska, D., Vargas Jentzsch, I. M. & Panfilio, K. A. Unexpected mutual regulation underlies paralogue functional diversification and promotes epithelial tissue maturation in Tribolium. Commun. Biol. 3, 552. https://doi.org/10.1038/s42003-020-01250-3 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Destain, H., Prahlad, M. & Kratsios, P. Maintenance of neuronal identity in C. Elegans and beyond: lessons from transcription and chromatin factors. Semin Cell. Dev. Biol. 154, 35–47. https://doi.org/10.1016/j.semcdb.2023.07.001 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leyva-Diaz, E. & Hobert, O. Transcription factor autoregulation is required for acquisition and maintenance of neuronal identity. Development 146 https://doi.org/10.1242/dev.177378 (2019).

  • Adamaki, M. et al. HOXA9 and MEIS1 gene overexpression in the diagnosis of childhood acute leukemias: significant correlation with relapse and overall survival. Leuk. Res. 39, 874–882. https://doi.org/10.1016/j.leukres.2015.04.012 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q. F. et al. Regulation of MEIS1 by distal enhancer elements in acute leukemia. Leukemia 28, 138–146. https://doi.org/10.1038/leu.2013.260 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El-Brolosy, M. A. et al. Genetic compensation triggered by mutant mRNA degradation. Nature 568, 193–197. https://doi.org/10.1038/s41586-019-1064-z (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, Z. & Chen, J. Premature termination Codon-Bearing mRNA mediates genetic compensation response. Zebrafish https://doi.org/10.1089/zeb.2019.1824 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Xie, A. et al. Upf3a but not Upf1 mediates the genetic compensation response induced by leg1 deleterious mutations in an H3K4me3-independent manner. Cell. Discov. 9, 63. https://doi.org/10.1038/s41421-023-00550-2 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graham, V., Khudyakov, J., Ellis, P. & Pevny, L. SOX2 functions to maintain neural progenitor identity. Neuron 39, 749–765. https://doi.org/10.1016/s0896-6273(03)00497-5 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yun, K., Garel, S., Fischman, S. & Rubenstein, J. L. Patterning of the lateral ganglionic eminence by the Gsh1 and Gsh2 homeobox genes regulates striatal and olfactory bulb histogenesis and the growth of axons through the basal ganglia. J. Comp. Neurol. 461, 151–165. https://doi.org/10.1002/cne.10685 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bacon, C. et al. Brain-specific Foxp1 deletion impairs neuronal development and causes autistic-like behaviour. Mol. Psychiatry. 20, 632–639. https://doi.org/10.1038/mp.2014.116 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murugan, M., Harward, S., Scharff, C. & Mooney, R. Diminished FoxP2 levels affect dopaminergic modulation of corticostriatal signaling important to song variability. Neuron 80, 1464–1476. https://doi.org/10.1016/j.neuron.2013.09.021 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Precious, S. V. et al. FoxP1 marks medium spiny neurons from precursors to maturity and is required for their differentiation. Exp. Neurol. 282, 9–18. https://doi.org/10.1016/j.expneurol.2016.05.002 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Rhijn, J. R., Fisher, S. E. & Vernes, S. C. Nadif Kasri, N. Foxp2 loss of function increases striatal direct pathway inhibition via increased GABA release. Brain Struct. Funct. 223, 4211–4226. https://doi.org/10.1007/s00429-018-1746-6 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michaud, M., Lavigne, G., Desautels, A., Poirier, G. & Montplaisir, J. Effects of immobility on sensory and motor symptoms of restless legs syndrome. Mov. Disord. 17, 112–115. https://doi.org/10.1002/mds.10004 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Earley, C. J. et al. Increased synaptic dopamine in the putamen in restless legs syndrome. Sleep 36, 51–57. https://doi.org/10.5665/sleep.2300 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kocar, T. D., Muller, H. P. & Kassubek, J. Differential functional connectivity in thalamic and dopaminergic pathways in restless legs syndrome: a meta-analysis. Ther. Adv. Neurol. Disord. 13, 1756286420941670. https://doi.org/10.1177/1756286420941670 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salminen, A. V. et al. Consensus guidelines on Rodent models of restless legs syndrome. Mov. Disord. 36, 558–569. https://doi.org/10.1002/mds.28401 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Earley, C. J., Jones, B. C. & Ferre, S. Brain-iron deficiency models of restless legs syndrome. Exp. Neurol. 356, 114158. https://doi.org/10.1016/j.expneurol.2022.114158 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishi, A., Snyder, G. L. & Greengard, P. Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J. Neurosci. 17, 8147–8155. https://doi.org/10.1523/JNEUROSCI.17-21-08147.1997 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouimet, C., Miller, P., Hemmings, H. C., Walaas, J., Greengard, P. & S. & DARPP-32, a dopamine- and adenosine 3’:5’-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J. Neurosci. 4, 111–124. https://doi.org/10.1523/jneurosci.04-01-00111.1984 (1984).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bateup, H. S. et al. Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc. Natl. Acad. Sci. U S A. 107, 14845–14850. https://doi.org/10.1073/pnas.1009874107 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, Z. et al. Dlx1/2-dependent expression of Meis2 promotes neuronal fate determination in the mammalian striatum. Development 149 https://doi.org/10.1242/dev.200035 (2022).

  • Dvoretskova, E. et al. Spatial enhancer activation influences inhibitory neuron identity during mouse embryonic development. Nat. Neurosci. https://doi.org/10.1038/s41593-024-01611-9 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L. et al. Transcriptional Profiling Reveals the Transcription Factor Networks Regulating the Survival of Striatal Neurons. bioRxiv (2021).

  • Cathiard, L. et al. Investigation of dopaminergic signalling in Meis homeobox 1 (Meis1) deficient mice as an animal model of restless legs syndrome. J Sleep Res, e13311 (2021). https://doi.org/10.1111/jsr.13311

  • Ferre, S. et al. Pivotal role of Adenosine neurotransmission in restless legs syndrome. Front. Neurosci. 11, 722. https://doi.org/10.3389/fnins.2017.00722 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Lanza, G. et al. Impaired short-term plasticity in restless legs syndrome: a pilot rTMS study. Sleep. Med. 46, 1–4. https://doi.org/10.1016/j.sleep.2018.02.008 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Castiglioni, V. et al. Dynamic and cell-specific DACH1 expression in human neocortical and Striatal Development. Cereb. Cortex. 29, 2115–2124. https://doi.org/10.1093/cercor/bhy092 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Gangwar, S. P. et al. Molecular Mechanism of MDGA1: Regulation of Neuroligin 2:Neurexin Trans-synaptic Bridges. Neuron 94, 1132–1141 e1134 (2017). https://doi.org/10.1016/j.neuron.2017.06.009

  • Matsukawa, H. et al. Netrin-G/NGL complexes encode functional synaptic diversification. J. Neurosci. 34, 15779–15792. https://doi.org/10.1523/JNEUROSCI.1141-14.2014 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarayloo, F., Dion, P. A. & Rouleau, G. A. MEIS1 and restless legs syndrome: a Comprehensive Review. Front. Neurol. 10, 935. https://doi.org/10.3389/fneur.2019.00935 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. https://doi.org/10.1093/bioinformatics/bts635 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169. https://doi.org/10.1093/bioinformatics/btu638 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davison, A. C. & Hinkley, D. V. in Bootstrap Methods and their Application Ch. 5, (1997).

  • Li, Q. H., Brown, J. B., Huang, H. Y. & Bickel, P. J. Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat. 5, 1752–1779. https://doi.org/10.1214/11-Aoas466 (2011).

    Article 
    MathSciNet 

    Google Scholar
     

  • Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26. https://doi.org/10.1038/nbt.1754 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar