Search
Close this search box.

Resting state neurophysiology of agonist–antagonist myoneural interface in persons with transtibial amputation – Scientific Reports

  • Molina, C., Faulk, J. Lower Extremity Amputation. (StatPearls Publishing LLC, 2022), pp. 1–23.

  • Dillingham, T., Pezzin, L. & Shore, A. Reamputation, mortality, and health care costs among persons with dysvascular lower-limb amputations. Arch. Phys. Med. Rehabil. 86, 480–486 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Sauter, C. N., Pezzin, L. E. & Dillingham, T. R. Functional outcomes of persons who underwent dysvascular lower extremity amputations: effect of postacute rehabilitation setting. Am. J. Phys. Med. Rehabil. 92(4), 287–296 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • M. Edwards, Clinician’s Guide to Assistive Technology. (2002), pp. 297–310.

  • List, E., Krijgh, D., Enrico, M. & Coert, J. Prevalence of residual limb pain and symptomatic neuromas after lower extremity amputation: a systematic review and meta-analysis. Pain. 162(7), 1906–1913 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Penna, A., Konstantatos, A., Cranwell, W., Paul, E. & Bruscino-Raiola, F. Incidence and associations of painful neuroma in a contemporary cohort of lower-limb amputees. ANZ J. Surg. 88(5), 491–496 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Flor, H., Nikolajsen, L. & Jensen, T. Phantom limb pain: A case of maladaptive CNS plasticity?. Nat. Rev. Neurosci. 7, 873–771 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schone, H. et al. Making sense of phantom limb pain. J. Neurol. Neurosurg. Psychiatry. 93, 833–843 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Srinivasan, S. et al. On prosthetic control: A regenerative agonist-antagonist myoneural interface. Sci. Robot. 2, 6 (2017).

    Article 

    Google Scholar
     

  • Srinivasan, S. et al. Neural interfacing architecture enables enhanced motor control and residual limb functionality postamputation. Proc. Natl. Acad. Sci. U.S.A. 118(9), e2019555118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srinivasan, S. et al. Agonist-antagonist myoneural interface amputation preserves proprioceptive sensorimotor neurophysiology in lower limbs. Sci. Trans. Med. 12, 573 (2020).

    Article 

    Google Scholar
     

  • Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Conn. 2, 125–141 (2012).

    Article 

    Google Scholar
     

  • Power, J., Schlaggar, B. & Petersen, S. Studying brain organization via spontaneous fMRI signal. Neuron. 84, 681–696 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Brain functional connectivity plasticity within and beyond the sensorimotor network in lower-limb amputees. Front. Hum. Neurosci. 12, 403 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bramati, I. et al. Lower limb amputees undergo long-distance plasticity in sensorimotor functional connectivity. Sci Rep. 9, 2518 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menon, V. & Uddin, L. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Function. 214, 655–667 (2010).

    Article 

    Google Scholar
     

  • Seeley, W. The salience network: a neural system for perceiving and responding to homeostatic demands. J. Neurosci. 39, 9878–9882 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • C. Henley, Foundations of Neuroscience. (Michigan State University Libraries, 2021), Ch. 26.

  • Claret, C. R. et al. Neuromuscular adaptations and sensorimotor integration following a unilateral transfemoral amputation. J. Neuroeng. and Rehabil. 16, 115 (2019).

    Article 

    Google Scholar
     

  • Geurts, A. & Mulder, T. Reorganisation of postural control following lower limb amputation: Theoretical considerations and implications for rehabilitation. Physiother. Theory Pract. 8, 145–157 (1992).

    Article 

    Google Scholar
     

  • Hlavackova, P., Franco, C., Diot, B. & Vuillerme, N. Contribution of each leg to the control of unperturbed bipedal stance in lower limb amputees: New insights using entropy. PLoS One. 6(5), e19661 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • N. Carlson, Physiology of Behavior. (Pearson, ed. 11, 2014), pp. 255–288.

  • Reed, C. & Caselli, R. The nature of tactile agnosia: A case study. Neuropsychologia. 32, 527–539 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wijk, U. & Carlsson, I. Forearm amputees’ views of prosthesis use and sensory feedback. J. Hand. Ther. 28, 269–278 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Smail, L., Neal, C., Wilkins, C. & Packham, T. Comfort and function remain key factors in upper limb prosthetic abandonment: findings of a scoping review. Disabil. Rehabil. Assist. Technol. 16, 821–830 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Rackerby, R., Lukosch, S. & Munro, D. Understanding and measuring the cognitive load of amputees for rehabilitation and prosthesis development. Arch. Rehabil. Res. Clin. Transl. 4, 100216 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swerdloff, M., Hargrove, L. Quantifying cognitive load using EEG during ambulation and postural tasks. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2849–2852 (2020)

  • Mohan, A. & Vanneste, S. Adaptive and maladaptive neural compensatory consequences of sensory deprivation—from a phantom percept perspective. Prog. Neurobiol. 153, 1–17 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Perez, D., Dwortesky, A., Braga, R., Beeman, M. & Gratton, C. Hemispheric asymmetries of individual differences in functional connectivity. J. Cogn. Neurosci. 35, 200–225 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, B. et al. Heritability and cross-species comparisons of human cortical functional organization asymmetry. elife. 11, e77215 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bekrater-Bodmann, R. Perceptual correlates of successful body–prosthesis interaction in lower limb amputees: psychometric characterisation and development of the Prosthesis Embodiment Scale. Sci. Rep. 10, 14203 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bekrater-Bodmann, R. Factors associated with prosthesis embodiment and its importance for prosthetic satisfaction in lower limb amputees. Front. Neurorobot. 14, 604376 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akselrod, M. et al. Anatomical and functional properties of the foot and leg representation in areas 3b, 1 and 2 of primary somatosensory cortex in humans: a 7T fMRI study. NeuroImage. 159, 473–487 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Makin, T. R. et al. Network-level reorganisation of functional connectivity following arm amputation. Neuroimage. 1(114), 217–25 (2015).

    Article 

    Google Scholar
     

  • Jiang, G. et al. The plasticity of brain gray matter and white matter following lower limb amputation. Neural Plast. 2015, 1–10 (2015).

    CAS 

    Google Scholar
     

  • Pazzaglia, M. & Zantedeschi, M. Plasticity and awareness of bodily distortion. Neural Plast. 2016, 1–7 (2016).

    Article 

    Google Scholar
     

  • Clites, T., Herr, H., Srinivasan, S., Zorzos, A. & Carty, M. The ewing amputation: The first human implementation of the agonist-antagonist myoneural interface. Plast. Reconstr. Surg. Glob. 6, e1997 (2018).


    Google Scholar
     

  • Clites, T. et al. Proprioception from a neurally controlled lower-extremity prosthesis. Sci. Transl. Med. 10, eaap8373 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Vizioli, L. et al. Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging. Nat. Commun. 12, 5181 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friston, K., Büchel, C. in Statistical Parametric Mapping, K. Friston, J. Ashburner, S. Kiebel, T. Nichols, and W. Penny, Eds. (Elsevier LTD, Oxford, 2007), pp. 492–508.

  • MATLAB and Statistics Toolbox Release, The MathWorks, Inc., Natick, Massachusetts, United States (2012b).

  • Wu, G. R. et al. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data. Med. Image Anal. 17, 365–374 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Rangaprakash, D., Wu, G. R., Marinazzo, D., Hu, X. & Deshpande, G. Hemodynamic response function (HRF) variability confounds resting-state fMRI functional connectivity. Magn. Reson. Med. 80, 1697–1713 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rangaprakash, D. et al. Hemodynamic variability in soldiers with trauma: Implications for functional MRI connectivity studies. Neuroimage Clin. 16, 409–417 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, W., Rangaprakash, D. & Deshpande, G. Aberrant hemodynamic responses in autism: Implications for resting State fMRI functional connectivity studies. Neuroimage Clin. 19, 320–330 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhi, D., King, M., Hernandez-Castillo, C. & Diedrichsen, J. Evaluating brain parcellations using the distance controlled boundary coefficient. Hum. Brain Mapp. 43, 3706–3720 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Power, J. et al. Functional network organization of the human brain. Neuron. 72, 665–678 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makris, N. et al. Decreased Volume of left and total anterior insular lobule in schizophrenia. Schizophr. Res. 83, 155–171 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Frazier, J. et al. Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am. J. Psychiatry. 162, 1256–1265 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Desikan, R. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 31, 968–980 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Goldstein, J. et al. Hypothalamic abnormalities in schizophrenia: Sex effects and genetic vulnerability. Biol. Psychiatry. 61, 935–945 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buckner, R., Krienen, F., Castellanos, A., Diaz, J. & Yeo, B. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophys. 106, 2322–2345 (2011).

    Article 

    Google Scholar
     

  • Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage. 52, 1059–1069 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Xia, M., Wang, J. & He, Y. BrainNet viewer: A network visualization tool for human brain connectomics. PLoS One. 8, e68910 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar