Remote disruption of intestinal homeostasis by Mycobacterium abscessus is detrimental to Drosophila survival

  • Hayman, J. Mycobacterium ulcerans: an infection from Jurassic time?. Lancet 2, 1015–1016 (1984).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Falkinham, J. O. Environmental sources of nontuberculous mycobacteria. Clin. Chest Med. 36, 35–41 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Turenne, C. Y. Nontuberculous mycobacteria: Insights on taxonomy and evolution. Infect. Genet. Evol. 72, 159–168 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Griffith, D. E. et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 175, 367–416 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griffith, D. E. Nontuberculous mycobacterial lung disease. Curr. Opin. Infect. Dis. 23, 185–190 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Medjahed, H., Gaillard, J.-L. & Reyrat, J.-M. Mycobacterium abscessus: a new player in the mycobacterial field. Trends Microbiol. 18, 117–123 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferrell, K. C., Johansen, M. D., Triccas, J. A. & Counoupas, C. Virulence Mechanisms of Mycobacterium abscessus: Current Knowledge and Implications for Vaccine Design. Front Microbiol 13, 842017 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nessar, R., Cambau, E., Reyrat, J. M., Murray, A. & Gicquel, B. Mycobacterium abscessus: a new antibiotic nightmare. J. Antimicrob. Chemother. 67, 810–818 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roux, A.-L. et al. The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages. Open Biol 6, 160185 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bernut, A. et al. Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation. Proc. Natl. Acad. Sci. USA 111, E943–E952 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Touré, H. et al. Mycobacterium abscessus Opsonization Allows an Escape from the Defensin Bactericidal Action in Drosophila. Microbiol. Spect. 2, e00777-23 (2023).


    Google Scholar
     

  • Touré, H. et al. Mycobacterium abscessus resists the innate cellular response by surviving cell lysis of infected phagocytes. PLOS Pathogens 19, e1011257 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Troha, K. & Buchon, N. Methods for the study of innate immunity in Drosophila melanogaster. WIREs Develop. Biol. 8, e344 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Touré, H., Herrmann, J.-L., Szuplewski, S. & Girard-Misguich, F. Drosophila melanogaster as an organism model for studying cystic fibrosis and its major associated microbial infections. Inf. Immun. 1, e00240 (2023).


    Google Scholar
     

  • Miguel-Aliaga, I., Jasper, H. & Lemaitre, B. Anatomy and physiology of the digestive tract of drosophila melanogaster. Genetics 210, 357–396 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Buchon, N., Broderick, N. A., Poidevin, M., Pradervand, S. & Lemaitre, B. Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe. 5, 200–211 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, X., Liu, N., Qi, H. & Lin, H. Piwi maintains homeostasis in the Drosophila adult intestine. Stem Cell Rep. 18, 503–518 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Micchelli, C. A. & Perrimon, N. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439, 475–479 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lemaitre, B. & Miguel-Aliaga, I. The digestive tract of drosophila melanogaster. Ann. Rev. Genet. 47, 377–404 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jin, Z., Che, M. & Xi, R. Identification of progenitor cells and their progenies in adult Drosophila midgut. Methods Cell Biol. 170, 169–187 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Evans, C. J. et al. G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat. Methods 6, 603–605 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gomez-Lamarca, M. J. et al. Activation of the notch signaling pathway in vivo elicits changes in CSL nuclear dynamics. Dev. Cell 44, 611-623.e7 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Castonguay-Vanier, J., Vial, L., Tremblay, J. & Déziel, E. Drosophila melanogaster as a model host for the Burkholderia cepacia complex. PLoS ONE 5, e11467 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perdigoto, C. N., Schweisguth, F. & Bardin, A. J. Distinct levels of Notch activity for commitment and terminal differentiation of stem cells in the adult fly intestine. Development 138, 4585–4595 (2011).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • McGuire, S. E., Mao, Z. & Davis, R. L. Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci. STKE 2004, p16 (2004).

    Article 
    MATH 

    Google Scholar
     

  • Lecourtois, M. & Schweisguth, F. Indirect evidence for Delta-dependent intracellular processing of notch in Drosophila embryos. Curr. Biol. 8, 771–774 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buchon, N., Broderick, N. A., Chakrabarti, S. & Lemaitre, B. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes. Dev. 23, 2333–2344 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchon, N., Broderick, N. A. & Lemaitre, B. Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nat. Rev. Microbiol. 11, 615–626 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lee, K.-A. et al. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 153, 797–811 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ha, E.-M., Oh, C.-T., Bae, Y. S. & Lee, W.-J. A direct role for dual oxidase in drosophila gut immunity. Science 310, 847–850 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ramond, E. et al. Reactive oxygen species-dependent innate immune mechanisms control methicillin-resistant staphylococcus aureus virulence in the drosophila larval model. mBio 12, e0027621 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhou, F., Rasmussen, A., Lee, S. & Agaisse, H. The Upd3 cytokine couples environmental challenge and intestinal stem cell division through modulation of JAK/STAT signaling in the stem cell microenvironment. Dev Biol 373, 383–393 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhai, Z., Boquete, J.-P. & Lemaitre, B. A genetic framework controlling the differentiation of intestinal stem cells during regeneration in Drosophila. PLoS Genet 13, e1006854 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bach, E. A. et al. GFP reporters detect the activation of the Drosophila JAK/STAT pathway in vivo. Gene Expr. Patt. 7, 323–331 (2007).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Chakrabarti, S. et al. Remote control of intestinal stem cell activity by haemocytes in drosophila. PLoS Genet. 12, e1006089 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Péan, C. B. et al. Regulation of phagocyte triglyceride by a STAT-ATG2 pathway controls mycobacterial infection. Nat. Commun. 8, 14642 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ramesh Kumar, J., Smith, J. P., Kwon, H. & Smith, R. C. Use of clodronate liposomes to deplete phagocytic immune cells in drosophila melanogaster and aedes aegypti. Front Cell Dev. Biol. 9, 627976 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qvist, T. et al. Comparing the harmful effects of nontuberculous mycobacteria and Gram negative bacteria on lung function in patients with cystic fibrosis. J. Cyst. Fibros. 15, 380–385 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Abidin, N. Z. et al. Trends in nontuberculous mycobacteria infection in children and young people with cystic fibrosis. J. Cyst. Fibros. 20, 737–741 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tunesi, S. et al. Antimicrobial susceptibility of Mycobacterium abscessus and treatment of pulmonary and extra-pulmonary infections. Clin. Microbiol. Infect. 30, 718. https://doi.org/10.1016/j.cmi.2023.09.019 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johansen, M. D., Herrmann, J.-L. & Kremer, L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat. Rev. Microbiol. 18, 392–407 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Catherinot, E. et al. Hypervirulence of a rough variant of the Mycobacterium abscessus type strain. Infect Immun. 75, 1055–1058 (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Roux, A.-L. et al. Overexpression of proinflammatory TLR-2-signalling lipoproteins in hypervirulent mycobacterial variants. Cell Microbiol. 13, 692–704 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jönsson, B., Ridell, M. & Wold, A. E. Phagocytosis and cytokine response to rough and smooth colony variants of Mycobacterium abscessus by human peripheral blood mononuclear cells. APMIS 121, 45–55 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Catherinot, E. et al. Acute respiratory failure involving an R variant of Mycobacterium abscessus. J. Clin. Microbiol. 47, 271–274 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Ganbat, D. et al. Mycobacteria infect different cell types in the human lung and cause species dependent cellular changes in infected cells. BMC Pulm. Med 16, 19 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Oberley-Deegan, R. E. et al. An oxidative environment promotes growth of mycobacterium abscessus. Free Radic Biol Med 49, 1666–1673 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kim, B.-R., Kim, B.-J., Kook, Y.-H. & Kim, B.-J. Mycobacterium abscessus infection leads to enhanced production of type 1 interferon and NLRP3 inflammasome activation in murine macrophages via mitochondrial oxidative stress. PLoS Pathog. 16, e1008294 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Malcolm, K. C. et al. Neutrophil killing of Mycobacterium abscessus by intra- and extracellular mechanisms. PLoS One 13, e0196120 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Moigne, V. et al. Roscovitine Worsens Mycobacterium abscessus Infection by Reducing DUOX2-mediated Neutrophil Response. Am J Respir Cell Mol Biol 66, 439–451 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leon-Icaza, S. A. et al. Druggable redox pathways against Mycobacterium abscessus in cystic fibrosis patient-derived airway organoids. PLOS Pathogens 19, e1011559 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hodgson, K. et al. Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology 144, 171–185 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Juarez, M. T., Patterson, R. A., Sandoval-Guillen, E. & McGinnis, W. Duox, Flotillin-2, and Src42A are required to activate or delimit the spread of the transcriptional response to epidermal wounds in Drosophila. PLoS Genet 7, e1002424 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Razzell, W., Evans, I. R., Martin, P. & Wood, W. Calcium flashes orchestrate the wound inflammatory response through DUOX activation and hydrogen peroxide release. Curr. Biol. 23, 424–429 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, S., Hu, N. & Hombrı́a, J. C.-G.,. Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless. Curr. Biol. 11, 1700–1705 (2001).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Agaisse, H., Petersen, U. M., Boutros, M., Mathey-Prevot, B. & Perrimon, N. Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Dev Cell 5, 441–450 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar