Search
Close this search box.

Random mutagenesis of Phaeodactylum tricornutum using ultraviolet, chemical, and X-radiation demonstrates the need for temporal analysis of phenotype stability – Scientific Reports

  • Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W. & Mortensen, D. A. Agriculture in 2050: Recalibrating targets for sustainable intensification. Bioscience 67, 386–391 (2017).

    Article 

    Google Scholar
     

  • Sabiha, N.-E., Salim, R., Rahman, S. & Rola-Rubzen, M. F. Measuring environmental sustainability in agriculture: A composite environmental impact index approach. J. Environ. Manag. 166, 84–93 (2016).

    Article 

    Google Scholar
     

  • Fróna, D., Szenderák, J. & Harangi-Rákos, M. The challenge of feeding the world. Sustainability 11, 5816 (2019).

    Article 

    Google Scholar
     

  • Alvarez, A. L., Weyers, S. L., Goemann, H. M., Peyton, B. M. & Gardner, R. D. Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Res. 54, 102200 (2021).

    Article 

    Google Scholar
     

  • Barolo, L. et al. Perspectives for glyco-engineering of recombinant biopharmaceuticals from microalgae. Cells 9, 633 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ambati, R. R. et al. Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Crit. Rev. Food Sci. Nutr. 59, 1880–1902 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Khan, M. I., Shin, J. H. & Kim, J. D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 17, 36 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, M. & Bassi, A. Carotenoids from microalgae: A review of recent developments. Biotechnol. Adv. 34, 1396–1412 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Nuhma, M. J., Alias, H., Tahir, M. & Jazie, A. A. Microalgae biomass conversion into biofuel using modified HZSM-5 zeolite catalyst: A review. Mater. Today Proc. 42, 2308–2313 (2021).

    Article 

    Google Scholar
     

  • Calijuri, M. L. et al. Bioproducts from microalgae biomass: Technology, sustainability, challenges and opportunities. Chemosphere 305, 135508 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fabris, M. et al. Emerging technologies in algal biotechnology: Toward the establishment of a sustainable, algae-based bioeconomy. Front. Plant Sci. 11, 279 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dragosits, M. & Mattanovich, D. Adaptive laboratory evolution–principles and applications for biotechnology. Microb. Cell Fact. 12, 1–17 (2013).

    Article 

    Google Scholar
     

  • Portnoy, V. A., Bezdan, D. & Zengler, K. Adaptive laboratory evolution—harnessing the power of biology for metabolic engineering. Curr. Opin. Biotechnol. 22, 590–594 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Livneh, Z., Cohen-Fix, O., Skaliter, R. & Elizur, T. Replication of damaged DNA and the molecular mechanism of ultraviolet light mutagenesis. Crit. Rev. Biochem. Mol. Biol. 28, 465–513. https://doi.org/10.3109/10409239309085136 (1993).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, Y., Schumaker, K. S. & Zhu, J.-K. EMS mutagenesis of Arabidopsis. Methods Mol. Biol. 323, 101–103 (2006).

    PubMed 

    Google Scholar
     

  • Borrego-Soto, G., Ortiz-López, R. & Rojas-Martínez, A. Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer. Genet. Mol. Biol. 38, 420–432 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ward, J. The yield of DNA double-strand breaks produced intracellularly by ionizing radiation: A review. Int. J. Radiat. Biol. 57, 1141–1150 (1990).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, M. et al. Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae. Bioresour. Technol. 222, 130–138 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Beacham, T., Macia, V. M., Rooks, P., White, D. & Ali, S. Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis. Biotechnol. Rep. 7, 87–94 (2015).

    Article 

    Google Scholar
     

  • Meireles, L. A., Guedes, A. C. & Malcata, F. X. Increase of the yields of eicosapentaenoic and docosahexaenoic acids by the microalga Pavlova lutheri following random mutagenesis. Biotechnol. Bioeng. 81, 50–55 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Li, F.-F. et al. Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber. Ind. Eng. Chem. Res. 50, 6496–6502 (2011).

    Article 

    Google Scholar
     

  • Price, S., Kuzhiumparambil, U., Pernice, M. & Ralph, P. J. Cyanobacterial polyhydroxybutyrate for sustainable bioplastic production: Critical review and perspectives. J. Environ. Chem. Eng. https://doi.org/10.1016/j.jece.2020.104007 (2020).

    Article 

    Google Scholar
     

  • Yi, Z. et al. Chemical mutagenesis and fluorescence-based high-throughput screening for enhanced accumulation of carotenoids in a model marine diatom Phaeodactylum tricornutum. Mar. Drugs https://doi.org/10.3390/md16080272 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi, Z. et al. Photo-oxidative stress-driven mutagenesis and adaptive evolution on the marine diatom Phaeodactylum tricornutum for enhanced carotenoid accumulation. Mar. Drugs 13, 6138–6151 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nybom, N. Some experiences from mutation experiments in Chlamydomonas. Hereditas 39, 317–324 (1953).

    Article 

    Google Scholar
     

  • Halberstaedter, L. & Back, A. The effect of X rays on single colonies of pandorina. Br. J. Radiol. 15, 124–128 (1942).

    Article 

    Google Scholar
     

  • Kumar, H. Effects of radiations on blue-green algae: II. Effects in growth. Ann. Bot. 28, 555–564 (1964).

    Article 

    Google Scholar
     

  • Hashimoto, H., Uragami, C. & Cogdell, R. J. Carotenoids and photosynthesis. Carotenoids in nature, 111–139 (2016).

  • Henríquez, V., Escobar, C., Galarza, J. & Gimpel, J. Carotenoids in microalgae. Carotenoids in Nature, 219–237 (2016).

  • Gammone, M. A., Riccioni, G. & D’Orazio, N. Marine carotenoids against oxidative stress: Effects on human health. Mar. Drugs 13, 6226–6246 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McClure, D. D., Luiz, A., Gerber, B., Barton, G. W. & Kavanagh, J. M. An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Res. 29, 41–48 (2018).

    Article 

    Google Scholar
     

  • Macdonald Miller, S. et al. Comparative study highlights the potential of spectral deconvolution for fucoxanthin screening in live Phaeodactylum tricornutum cultures. Mar. Drugs 20, 19 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, Y. et al. Rapid sorting of fucoxanthin-producing Phaeodactylum tricornutum mutants by flow cytometry. Mar. Drugs 19, 228 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darley, W. M. & Volcani, B. Role of silicon in diatom metabolism: a silicon requirement for deoxyribonucleic acid synthesis in the diatom Cylindrotheca fusiformis Reimann and Lewin. Exp. Cell Res. 58, 334–342 (1969).

    Article 
    PubMed 

    Google Scholar
     

  • Friedberg, E. C. et al. DNA Repair and Mutagenesis 2nd edn. (American Society for Microbiology, 2005).

    Book 

    Google Scholar
     

  • Bulankova, P. et al. Mitotic recombination between homologous chromosomes drives genomic diversity in diatoms. Curr. Biol. 31, 3221-3232.e3229 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Myung, K. & Kolodner, R. D. Induction of genome instability by DNA damage in Saccharomyces cerevisiae. DNA Repair 2, 243–258 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Trovão, M. et al. Random mutagenesis as a promising tool for microalgal strain improvement towards industrial production. Mar. Drugs 20, 440 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, F., Teles, I., Ferrer-Ledo, N., Wijffels, R. H. & Barbosa, M. J. Production and high throughput quantification of fucoxanthin and lipids in Tisochrysis lutea using single-cell fluorescence. Bioresour. Technol. 318, 124104 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Pereira, H. et al. Fluorescence activated cell-sorting principles and applications in microalgal biotechnology. Algal Res. 30, 113–120 (2018).

    Article 

    Google Scholar
     

  • Gao, F., Cabanelas, I. T. D., Wijffels, R. H. & Barbosa, M. J. Fucoxanthin and docosahexaenoic acid production by cold-adapted Tisochrysis lutea. New Biotechnol. 66, 16–24 (2022).

    Article 

    Google Scholar
     

  • Tominaga, H., Kodama, S., Matsuda, N., Suzuki, K. & Watanabe, M. Involvement of reactive oxygen species (ROS) in the induction of genetic instability by radiation. J. Radiat. Res. 45, 181–188 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Friedberg, E. C., Walker, G. C., Siede, W. & Wood, R. D. DNA Repair and Mutagenesis (American Society for Microbiology Press, 2005).

    Book 

    Google Scholar
     

  • Patel, M., Jiang, Q., Woodgate, R., Cox, M. M. & Goodman, M. F. A new model for SOS-induced mutagenesis: How RecA protein activates DNA polymerase V. Crit. Rev. Biochem. Mol. Biol. 45, 171–184 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar