Search
Close this search box.

RAAS-deficient organoids indicate delayed angiogenesis as a possible cause for autosomal recessive renal tubular dysgenesis – Nature Communications

  • Lindstrom, N. O. et al. Integrated beta-catenin, BMP, PTEN, and Notch signalling patterns the nephron. eLife 3, e04000 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Lindstrom, N. O. et al. Spatial transcriptional mapping of the human nephrogenic program. Dev. Cell 56, 2381–2398.e2386 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costantini, F. & Kopan, R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev. Cell 18, 698–712 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rymer, C. et al. Renal blood flow and oxygenation drive nephron progenitor differentiation. Am. J. Physiol. Ren. Physiol. 307, F337–345 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 536, 238 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Morizane, R., Lam, A. Q., Freedman, B. S., Kishi, S., Valerius, M. T. & Bonventre, J. V. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol. 33, 1193–1200 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morizane, R., Monkawa, T. & Itoh, H. Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro. Biochem. Biophys. Res. Commun. 390, 1334–1339 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taguchi, A. et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14, 53–67 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Homan, K. A. et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat. Methods 16, 255–262 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, H., Uchimura, K., Donnelly, E. L., Kirita, Y., Morris, S. A. & Humphreys, B. D. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 23, 869–881.e868 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharmin, S. et al. Human induced pluripotent stem cell-derived podocytes mature into vascularized glomeruli upon experimental transplantation. J. Am. Soc. Nephrol. 27, 1778–1791 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koning, M. et al. Vasculogenesis in kidney organoids upon transplantation. NPJ Regen. Med. 7, 40 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van den Berg, C. W. et al. Renal subcapsular transplantation of PSC-derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation in vivo. Stem Cell Rep. 10, 751–765 (2018).

    Article 

    Google Scholar
     

  • Bantounas, I. et al. Generation of functioning nephrons by implanting human pluripotent stem cell-derived kidney progenitors. Stem Cell Rep. 10, 766–779 (2018).

    Article 

    Google Scholar
     

  • Dorison, A., Forbes, T. A. & Little, M. H. What can we learn from kidney organoids? Kidney Int. 102, 1013–1029 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Morizane, R. & Bonventre, J. V. Kidney organoids: a translational journey. Trends Mol. Med. 23, 246–263 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishinakamura, R. Human kidney organoids: progress and remaining challenges. Nat. Rev. Nephrol. 15, 613–624 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Freedman, B. S. Physiology assays in human kidney organoids. Am. J. Physiol. Ren. Physiol. 322, F625–F638 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gubler, M. C. & Antignac, C. Renin-angiotensin system in kidney development: renal tubular dysgenesis. Kidney Int. 77, 400–406 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gubler, M. C. Renal tubular dysgenesis. Pediatr. Nephrol. 29, 51–59 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gribouval, O. et al. Spectrum of mutations in the renin-angiotensin system genes in autosomal recessive renal tubular dysgenesis. Hum. Mutat. 33, 316–326 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gribouval, O. et al. Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat. Genet. 37, 964–968 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vincent, K. M. et al. Expanding the clinical spectrum of autosomal-recessive renal tubular dysgenesis: two siblings with neonatal survival and review of the literature. Mol. Genet. Genom. Med. 10, e1920 (2022).

    Article 

    Google Scholar
     

  • Schreiber, R., Gubler, M. C., Gribouval, O., Shalev, H. & Landau, D. Inherited renal tubular dysgenesis may not be universally fatal. Pediatr. Nephrol. 25, 2531–2534 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Demirgan, E. B. et al. AGTR1-related renal tubular dysgeneses may not be fatal. Kidney Int. Rep. 6, 846–852 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Oberg, K. C., Pestaner, J. P., Bielamowicz, L. & Hawkins, E. P. Renal tubular dysgenesis in twin-twin transfusion syndrome. Pediatr. Dev. Pathol. 2, 25–32 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landing, B. H., Ang, S. M., Herta, N., Larson, E. F. & Turner, M. Labeled lectin studies of renal tubular dysgenesis and renal tubular atrophy of postnatal renal ischemia and end-stage kidney disease. Pediatr. Pathol. 14, 87–99 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahieu-Caputo, D. et al. Twin-to-twin transfusion syndrome. Role of the fetal renin-angiotensin system. Am. J. Pathol. 156, 629–636 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, B. A potential role for angiotensin II-induced vascular endothelial growth factor expression in the pathogenesis of diabetic nephropathy? Min. Electrolyte Metab. 24, 400–405 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Kang, Y. S. et al. Angiotensin II stimulates the synthesis of vascular endothelial growth factor through the p38 mitogen activated protein kinase pathway in cultured mouse podocytes. J. Mol. Endocrinol. 36, 377–388 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Almeida, L. F., Tofteng, S. S., Madsen, K. & Jensen, B. L. Role of the renin-angiotensin system in kidney development and programming of adult blood pressure. Clin. Sci. 134, 641–656 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tufro-McReddie, A., Romano, L. M., Harris, J. M., Ferder, L. & Gomez, R. A. Angiotensin II regulates nephrogenesis and renal vascular development. Am. J. Physiol. 269, F110–115 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Feliers, D. & Kasinath, B. S. Mechanism of VEGF expression by high glucose in proximal tubule epithelial cells. Mol. Cell Endocrinol. 314, 136–142 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simon, M. et al. Expression of vascular endothelial growth factor and its receptors in human renal ontogenesis and in adult kidney. Am. J. Physiol. 268, F240–250 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Madsen, K. et al. Angiotensin II promotes development of the renal microcirculation through AT1 receptors. J. Am. Soc. Nephrol. 21, 448–459 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ballermann, B. J. Dependence of renal microvessel density on angiotensin II: only in the fetus? J. Am. Soc. Nephrol. 21, 386–388 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mounier, F. et al. Ontogenesis of angiotensin-I converting enzyme in human kidney. Kidney Int. 32, 684–690 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D. H., Du, Y., Zhao, H., Granger, J. P., Speth, R. C. & Dipette, D. J. Regulation of angiotensin type 1 receptor and its gene expression: role in renal growth. J. Am. Soc. Nephrol. 8, 193–198 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S. L., Guo, J., Moini, B. & Ingelfinger, J. R. Angiotensin II stimulates Pax-2 in rat kidney proximal tubular cells: impact on proliferation and apoptosis. Kidney Int. 66, 2181–2192 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Corvol, P., Michaud, A., Gribouval, O., Gasc, J. M. & Gubler, M. C. Can we live without a functional renin-angiotensin system? Clin. Exp. Pharm. Physiol. 35, 431–433 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Shankar, A. S. et al. Human kidney organoids produce functional renin. Kidney Int. 99, 134–147 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pupilli, C. et al. Angiotensin II stimulates the synthesis and secretion of vascular permeability factor/vascular endothelial growth factor in human mesangial cells. J. Am. Soc. Nephrol. 10, 245–255 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duvall, K., Crist, L., Perl, J. A., Pode Shaked, N., Chaturvedi, P. & Kopan, R. Revisiting the role of Notch in nephron segmentation confirms a role for proximal fate selection during mouse and human nephrogenesis. Development 149, dev200446 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morizane, R. & Bonventre, J. V. Generation of nephron progenitor cells and kidney organoids from human pluripotent stem cells. Nat. Protoc. 12, 195–207 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. K. et al. Gene-edited human kidney organoids reveal mechanisms of disease in podocyte development. Stem Cells 35, 2366–2378 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uchimura, K., Wu, H., Yoshimura, Y. & Humphreys, B. D. Human pluripotent stem cell-derived kidney organoids with improved collecting duct maturation and injury modeling. Cell Rep. 33, 108514 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Selfa, I. L., Gallo, M., Montserrat, N. & Garreta, E. Directed differentiation of human pluripotent stem cells for the generation of high-order kidney organoids. Methods Mol. Biol. 2258, 171–192 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cruz, N. M. & Freedman, B. S. Differentiation of human kidney organoids from pluripotent stem cells. Methods Cell Biol. 153, 133–150 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miao, Z. et al. Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets. Nat. Commun. 12, 2277 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marable, S. S., Chung, E., Adam, M., Potter, S. S. & Park, J. S. Hnf4a deletion in the mouse kidney phenocopies Fanconi renotubular syndrome. JCI Insight 3, e97497 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J., Xu, H., Aronow, B. J. & Jegga, A. G. Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinforma. 8, 392 (2007).

    Article 

    Google Scholar
     

  • Chen, J., Bardes, E. E., Aronow, B. J. & Jegga, A. G. ToppGene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37, W305–311 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greene, A. S. & Amaral, S. L. Microvascular angiogenesis and the renin-angiotensin system. Curr. Hypertens. Rep. 4, 56–62 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Jarmas, A. E., Brunskill, W. E., Chaturvedi, P., Salomonis, N. & Kopan, R. Progenitor translatome changes coordinated by Tsc1 increase perception of Wnt signals to end nephrogenesis. Nat. Commun. 12, 6332 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuo, J. L. & Li, X. C. Proximal nephron. Compr. Physiol. 3, 1079–1123 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Low, J. H. et al. Generation of human PSC-derived kidney organoids with patterned nephron segments and a De Novo vascular network. Cell Stem Cell 25, 373–387.e379 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marti, H. H. & Risau, W. Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc. Natl. Acad. Sci. USA 95, 15809–15814 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yanofsky, S. M. et al. Angiotensin II biphasically regulates cell differentiation in human iPSC-derived kidney organoids. Am. J. Physiol. Ren. Physiol. 321, F559–F571 (2021).

    Article 
    CAS 

    Google Scholar
     

  • de Kloet, A. D., Krause, E. G., Kim, D. H., Sakai, R. R., Seeley, R. J. & Woods, S. C. The effect of angiotensin-converting enzyme inhibition using captopril on energy balance and glucose homeostasis. Endocrinology 150, 4114–4123 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Q., Ishibashi, M., Hiasa, K., Tan, C., Takeshita, A. & Egashira, K. Essential role of vascular endothelial growth factor in angiotensin II-induced vascular inflammation and remodeling. Hypertension 44, 264–270 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, Y., Zhou, C. C., Ramin, S. M. & Kellems, R. E. Angiotensin receptors, autoimmunity, and preeclampsia. J. Immunol. 179, 3391–3395 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ager, E. I., Neo, J. & Christophi, C. The renin-angiotensin system and malignancy. Carcinogenesis 29, 1675–1684 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y., Yan, Z., Chaudhry, K. & Kazlauskas, A. The Renin-Angiotensin-Aldosterone System (RAAS) Is One of the Effectors by Which Vascular Endothelial Growth Factor (VEGF)/Anti-VEGF Controls the Endothelial Cell Barrier. Am. J. Pathol. 190, 1971–1981 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hilgers, K. F., Reddi, V., Krege, J. H., Smithies, O. & Gomez, R. A. Aberrant renal vascular morphology and renin expression in mutant mice lacking angiotensin-converting enzyme. Hypertension 29, 216–221 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oliverio, M. I. et al. Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc. Natl. Acad. Sci. USA 95, 15496–15501 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kajiwara, K., Ozawa, K., Wada, S. & Samura, O. Molecular mechanisms underlying twin-to-twin transfusion syndrome. Cells 11, 3268 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loquet, P., Pipkin, F.B., Symonds, E.M. & Rubin, P.C. Influence of raising maternal blood pressure with angiotensin II on utero-placental and feto-placental blood velocity indices in the human. Clin. Sci. 78, 95–100 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Nonn, O. et al. Maternal angiotensin increases placental leptin in early gestation via an alternative renin-angiotensin system pathway: suggesting a link to preeclampsia. Hypertension 77, 1723–1736 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fischer, B. & Bavister, B. D. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J. Reprod. Fertil. 99, 673–679 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia-Martinez, S. et al. Mimicking physiological O2 tension in the female reproductive tract improves assisted reproduction outcomes in pig. Mol. Hum. Reprod. 24, 260–270 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keeley, T. P. & Mann, G. E. Defining physiological normoxia for improved translation of cell physiology to animal models and humans. Physiol. Rev. 99, 161–234 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sparrow, D. B. et al. A mechanism for gene-environment interaction in the etiology of congenital scoliosis. Cell 149, 295–306 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Haeussler, M. et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 17, 148 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slaymaker, I. M., Gao, L., Zetsche, B., Scott, D. A., Yan, W. X. & Zhang, F. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Omer, D. et al. Human kidney spheroids and monolayers provide insights into SARS-CoV-2 renal interactions. J. Am. Soc. Nephrol. 32, 2242–2254 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4, 1521 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watson, C. L. et al. An in vivo model of human small intestine using pluripotent stem cells. Nat. Med. 20, 1310–1314 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latest Intelligence