Purification technologies for induced pluripotent stem cell therapies – Nature Reviews Bioengineering

  • Hashmi, S. K. Basics of hematopoietic cell transplantation for primary care physicians and internists. Prim. Care Clin. Off. Pract. 43, 693–701 (2016).

    Article 

    Google Scholar
     

  • Kehl, D. et al. Proteomic analysis of human mesenchymal stromal cell secretomes: a systematic comparison of the angiogenic potential. npj Regen. Med. 4, 8 (2019).

    Article 

    Google Scholar
     

  • Thanaskody, K. et al. MSCs vs. iPSCs: potential in therapeutic applications. Front. Cell Dev. Biol. https://doi.org/10.3389/fcell.2022.1005926 (2022).

    Article 

    Google Scholar
     

  • İnandıklıoğlu, N. & Akkoc, T. in Stem Cell-based Therapeutic Approaches in Disease. Cell Biology and Translational Medicine, Vol. 9 (ed. Turksen, K.) 5–12 (Springer, 2021).

  • Fernández-Muñoz, B. et al. Retrieval of germinal zone neural stem cells from the cerebrospinal fluid of premature infants with intraventricular hemorrhage. Stem Cell Transl. Med. 9, 1085–1101 (2020).

    Article 

    Google Scholar
     

  • Marotta, M. et al. Isolation, characterization, and differentiation of multipotent neural progenitor cells from human cerebrospinal fluid in fetal cystic myelomeningocele. Stem Cell Res. 22, 33–42 (2017).

    Article 

    Google Scholar
     

  • Cai, M. et al. Standards of induced pluripotent stem cells derived clinical-grade neural stem cells preparation and quality control (2021 China version). J. Neurorestoratol. 9, 13–30 (2021).

    Article 

    Google Scholar
     

  • Barak, M. et al. Human iPSC-derived neural models for studying Alzheimer’s disease: from neural stem cells to cerebral organoids. Stem Cell Rev. Rep. 18, 792–820 (2022).

    Article 

    Google Scholar
     

  • Shi, Yanhong, Inoue, Haruhiso & Yamanaka, S. Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug. Discov. 176, 115–130 (2017).

    Article 

    Google Scholar
     

  • Fujikawa, T. et al. Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am. J. Pathol. 166, 1781–1791 (2005).

    Article 

    Google Scholar
     

  • Lee, A. S. et al. Effects of cell number on teratoma formation by human embryonic stem cells. Cell Cycle 8, 2608–2612 (2009).

    Article 

    Google Scholar
     

  • Dagur, P. K. & McCoy, J. P. Collection, storage, and preparation of human blood cells. Curr. Protoc. Cytom. 2015, 5.1.1–5.1.16 (2015).


    Google Scholar
     

  • Connelly-Smith, L. S. & Linenberger, M. L. Therapeutic apheresis for patients with cancer. Cancer Control. 22, 60–78 (2015).

    Article 

    Google Scholar
     

  • Bieback, K., Schallmoser, K., Klüter, H. & Strunk, D. Clinical protocols for the isolation and expansion of mesenchymal stromal cells. Transfus. Med. Hemother. 35, 286–294 (2008).

    Article 

    Google Scholar
     

  • Rodríguez-Fuentes, D. E. et al. Mesenchymal stem cells current clinical applications: a systematic review. Arch. Med. Res. 52, 93–101 (2021).

    Article 

    Google Scholar
     

  • Xu, C., Police, S., Rao, N. & Carpenter, M. K. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res. 91, 501–508 (2002).

    Article 

    Google Scholar
     

  • Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 1015–1024 (2007).

    Article 

    Google Scholar
     

  • Wada, T. et al. Highly efficient differentiation and enrichment of spinal motor neurons derived from human and monkey embryonic stem cells. PLoS ONE 4, e6722 (2009).

    Article 

    Google Scholar
     

  • Liu, W. et al. Sample preparation method for isolation of single-cell types from mouse liver for proteomic studies. Proteomics 11, 3556–3564 (2011).

    Article 

    Google Scholar
     

  • Levine, B. L., Miskin, J., Wonnacott, K. & Keir, C. Global manufacturing of CAR T cell therapy. Mol. Ther. Methods Clin. Dev. 4, 92–101 (2017).

    Article 

    Google Scholar
     

  • Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

    Article 

    Google Scholar
     

  • Nakagawa, M. et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci. Rep. 4, 3594 (2014).

    Article 

    Google Scholar
     

  • Hagbard, L. et al. Developing defined substrates for stem cell culture and differentiation. Phil. Trans. R. Soc. B 373, 20170230 (2018).

    Article 

    Google Scholar
     

  • Schmidt, S., Lilienkampf, A. & Bradley, M. New substrates for stem cell control. Phil. Trans. R. Soc. B 373, 20170223 (2018).

    Article 

    Google Scholar
     

  • Hwang, N. S., Varghese, S. & Elisseeff, J. Controlled differentiation of stem cells. Adv. Drug Deliv. Rev. 60, 199–214 (2008).

    Article 

    Google Scholar
     

  • Gerardo, H. et al. Soft culture substrates favor stem-like cellular phenotype and facilitate reprogramming of human mesenchymal stem/stromal cells (hMSCs) through mechanotransduction. Sci. Rep. 9, 9086 (2019).

    Article 

    Google Scholar
     

  • Navarrete, R. O. et al. Substrate stiffness controls osteoblastic and chondrocytic differentiation of mesenchymal stem cells without exogenous stimuli. PLoS ONE 12, 1–18 (2017).


    Google Scholar
     

  • Zhang, T. et al. Regulating osteogenesis and adipogenesis in adipose-derived stem cells by controlling underlying substrate stiffness. J. Cell. Physiol. 233, 3418–3428 (2018).

    Article 

    Google Scholar
     

  • Wang, B., Tu, X., Wei, J., Wang, L. & Chen, Y. Substrate elasticity dependent colony formation and cardiac differentiation of human induced pluripotent stem cells. Biofabrication 11, 015005 (2019).

    Article 

    Google Scholar
     

  • Gungordu, H. I. et al. Effect of mechanical loading and substrate elasticity on the osteogenic and adipogenic differentiation of mesenchymal stem cells. J. Tissue Eng. Regen. Med. 13, 2279–2290 (2019).

    Article 

    Google Scholar
     

  • Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7. Acta Biomater. 6, 3021–3028 (2010).

    Article 

    Google Scholar
     

  • Taqvi, S. & Roy, K. Influence of scaffold physical properties and stromal cell coculture on hematopoietic differentiation of mouse embryonic stem cells. Biomaterials 27, 6024–6031 (2006).

    Article 

    Google Scholar
     

  • Haugh, M. G. et al. Investigating the interplay between substrate stiffness and ligand chemistry in directing mesenchymal stem cell differentiation within 3D macro-porous substrates. Biomaterials 171, 23–33 (2018).

    Article 

    Google Scholar
     

  • Moosazadeh Moghaddam, M. et al. Engineered substrates with imprinted cell-like topographies induce direct differentiation of adipose-derived mesenchymal stem cells into Schwann cells. Artif. Cells Nanomed. Biotechnol. 47, 1022–1035 (2019).

    Article 

    Google Scholar
     

  • Adil, M. M. et al. Efficient generation of hPSC-derived midbrain dopaminergic neurons in a fully defined, scalable, 3D biomaterial platform. Sci. Rep. 7, 40573 (2017).

    Article 

    Google Scholar
     

  • Kothapalli, C. R. & Kamm, R. D. 3D matrix microenvironment for targeted differentiation of embryonic stem cells into neural and glial lineages. Biomaterials 34, 5995–6007 (2013).

    Article 

    Google Scholar
     

  • Xing, F. et al. Regulation and directing stem cell fate by tissue engineering functional microenvironments: scaffold physical and chemical cues. Stem Cells Int. 2019, 2180925 (2019).

    Article 

    Google Scholar
     

  • Shibata, S. et al. Cell-type-specific adhesiveness and proliferation propensity on laminin isoforms enable purification of iPSC-derived corneal epithelium. Stem Cell Rep. 14, 663–676 (2020).

    Article 

    Google Scholar
     

  • Jiang, S., Müller, M. & Schönherr, H. Propagation and purification of human induced pluripotent stem cells with selective homopolymer release surfaces. Angew. Chem. Int. Ed. 58, 10563–10566 (2019).

    Article 

    Google Scholar
     

  • Yeh, C. C. et al. Data of continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surfaces. Data Brief 6, 603–608 (2016).

    Article 

    Google Scholar
     

  • Tohyama, S. et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12, 127–137 (2013).

    Article 

    Google Scholar
     

  • Hemmi, N. et al. A massive suspension culture system with metabolic purification for human pluripotent stem cell-derived cardiomyocytes. Stem Cell Trans. Med. 3, 1473–1483 (2014).

    Article 

    Google Scholar
     

  • Bohaciakova, D. et al. A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors. Stem Cell Res. Ther. 10, 83 (2019).

    Article 

    Google Scholar
     

  • Shinozawa, T., Furukawa, H., Sato, E. & Takami, K. A novel purification method of murine embryonic stem cell- and human-induced pluripotent stem cell-derived cardiomyocytes by simple manual dissociation. J. Biomol. Screen. 17, 683–691 (2012).

    Article 

    Google Scholar
     

  • Regha, K. et al. Customized strategies for high-yield purification of retinal pigment epithelial cells differentiated from different stem cell sources. Sci. Rep. 12, 15563 (2022).

    Article 

    Google Scholar
     

  • Teramura, T. et al. Laser-assisted cell removing (LACR) technology contributes to the purification process of the undifferentiated cell fraction during pluripotent stem cell culture. Biochem. Biophys. Res. Commun. 503, 3114–3120 (2018).

    Article 

    Google Scholar
     

  • Kim, M., Namkung, Y., Hyun, D. & Hong, S. Prediction of stem cell state using cell image-based deep learning. Adv. Intell. Syst. https://doi.org/10.1002/aisy.202370031 (2023).

  • Waisman, A. et al. Deep learning neural networks highly predict very early onset of pluripotent stem cell differentiation. Stem Cell Rep. 12, 845–859 (2019).

    Article 

    Google Scholar
     

  • Datta, S. et al. Laser capture microdissection: big data from small samples. Histol. Histopathol. 30, 1255–1269 (2015).


    Google Scholar
     

  • Fiedler, S., Shirley, S. G., Schnelle, T. & Fuhr, G. Dielectrophoretic sorting of particles and cells in a microsystem. Anal. Chem. 70, 1909–1915 (1998).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. From passive to active sorting in microfluidics: a review. Rev. Adv. Mater. Sci. 60, 313–324 (2021).

    Article 

    Google Scholar
     

  • Ding, L. et al. Scaling up stem cell production: harnessing the potential of microfluidic devices. Biotechnol. Adv. 69, 108271 (2023).

    Article 

    Google Scholar
     

  • Wu, H. W., Hsu, R. C., Lin, C. C., Hwang, S. M. & Lee, G. B. An integrated microfluidic system for isolation, counting, and sorting of hematopoietic stem cells. Biomicrofluidics 4, 024112 (2010).

    Article 

    Google Scholar
     

  • Hatch, A., Pesko, D. M. & Murthy, S. K. Tag-free microfluidic separation of cells against multiple markers. Anal. Chem. 84, 4618–4621 (2012).

    Article 

    Google Scholar
     

  • Sheng, W. et al. Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device. Anal. Chem. 84, 4199–4206 (2012).

    Article 

    Google Scholar
     

  • Reinholt, S. J. & Craighead, H. G. Microfluidic device for aptamer-based cancer cell capture and genetic mutation detection. Anal. Chem. 90, 2601–2608 (2018).

    Article 

    Google Scholar
     

  • Lecault, V. et al. High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat. Methods 8, 581–589 (2011).

    Article 

    Google Scholar
     

  • Schirhagl, R., Fuereder, I., Hall, E. W., Medeiros, B. C. & Zare, R. N. Microfluidic purification and analysis of hematopoietic stem cells from bone marrow. Lab Chip 11, 3130–3135 (2011).

    Article 

    Google Scholar
     

  • Singh, A. et al. Adhesive signature-based, label-free isolation of human pluripotent stem cells. ASME 2012. Summer Bioeng. Conf. 10, 313–314 (2012).


    Google Scholar
     

  • Li, X. et al. On chip purification of hiPSC-derived cardiomyocytes using a fishnet-like microstructure. Biofabrication 8, 035017 (2016).

    Article 

    Google Scholar
     

  • Jabart, E. et al. A microfluidic method for the selection of undifferentiated human embryonic stem cells and in situ analysis. Microfluid. Nanofluidics 18, 955–966 (2015).

    Article 

    Google Scholar
     

  • Wang, X. et al. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 11, 3656–3662 (2011).

    Article 

    Google Scholar
     

  • Ajanth, P., Sudeepthi, A. & Sen, A. K. Microfluidics technology for label-free isolation of circulating tumor cells. J. Inst. Eng. Ser. C 101, 1051–1071 (2020).

    Article 

    Google Scholar
     

  • Gao, Z. & Li, Y. Enhancing single-cell biology through advanced AI-powered microfluidics. Biomicrofluidics 17, 051301 (2023).

    Article 

    Google Scholar
     

  • Bacon, K., Lavoie, A., Rao, B. M., Daniele, M. & Menegatti, S. Past, present, and future of affinity-based cell separation technologies. Acta Biomater. 112, 29–51 (2020).

    Article 

    Google Scholar
     

  • Kummrow, A. et al. Quantitative assessment of cell viability based on flow cytometry and microscopy. Cytometry A 83 A, 197–204 (2013).

    Article 

    Google Scholar
     

  • Cao, X. et al. Differentiation and functional comparison of monocytes and macrophages from hiPSCs with peripheral blood derivatives. Stem Cell Rep. 12, 1282–1297 (2019).

    Article 

    Google Scholar
     

  • Pan, J. & Wan, J. Methodological comparison of FACS and MACS isolation of enriched microglia and astrocytes from mouse brain. J. Immunol. Methods 486, 112834 (2020).

    Article 

    Google Scholar
     

  • Miki, K. et al. Efficient detection and purification of cell populations using synthetic MicroRNA switches. Cell Stem Cell 16, 699–711 (2015).

    Article 

    Google Scholar
     

  • Fernandez, A. G. et al. High-throughput fluorescence-based isolation of live C. elegans larvae. Nat. Protoc. 7, 1502–1510 (2012).

    Article 

    Google Scholar
     

  • Longmire, T. A. et al. Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 10, 398–411 (2012).

    Article 

    Google Scholar
     

  • Fulwyler, M. J. Electronic separation of biological cells by volume. Science 150, 910–911 (1965).

    Article 

    Google Scholar
     

  • Sommer, U. et al. High-sensitivity flow cytometric assays: considerations for design control and analytical validation for identification of rare events. Cytometry B Clin. Cytom. 100, 42–51 (2021).

    Article 

    Google Scholar
     

  • Curtis, M. G., Walker, B. & Denny, T. N. Flow cytometric methods for prenatal and neonatal diagnosis. J. Immunol. Methods 363, 198–209 (2011).

    Article 

    Google Scholar
     

  • Dubois, N. C. et al. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat. Biotechnol. 29, 1011–1018 (2011).

    Article 

    Google Scholar
     

  • Pontén, A. et al. FACS-based isolation, propagation and characterization of mouse embryonic cardiomyocytes based on VCAM-1 surface marker expression. PLoS ONE 8, e82403 (2013).

    Article 

    Google Scholar
     

  • Hattori, F. et al. Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat. Methods 7, 61–66 (2010).

    Article 

    Google Scholar
     

  • Ben-David, U., Nudel, N. & Benvenisty, N. Immunologic and chemical targeting of the tight-junction protein Claudin-6 eliminates tumorigenic human pluripotent stem cells. Nat. Commun. 4, 1992 (2013).

    Article 

    Google Scholar
     

  • Sutermaster, B. A. & Darling, E. M. Considerations for high-yield, high-throughput cell enrichment: fluorescence versus magnetic sorting. Sci. Rep. 9, 227 (2019).

    Article 

    Google Scholar
     

  • Vemuri, M. C., Chase, L. G. & Rao, M. S. Mesenchymal stem cell assays and applications. Methods Mol. Biol. 698, 3–8 (2011).

    Article 

    Google Scholar
     

  • Ray, K., Gupta, S. M., Bala, M., Muralidhar, S. & Kumar, J. CD4/CD8 lymphocyte counts in healthy, HIV-positive individuals & AIDS patients. Indian J. Med. Res. 124, 319–330 (2006).


    Google Scholar
     

  • Buranapraditkun, S. et al. Cost savings by reagent reduction in flow cytometry-based CD4+ T cell counts: an approach to improve accessibility for HIV management. Asian Pac. J. Allergy Immunol. 25, 83–89 (2007).


    Google Scholar
     

  • Bomberger, C. et al. Lymphoid reconstitution after autologous PBSC transplantation with FACS-sorted CD34+ hematopoietic progenitors. Blood 91, 2588–2600 (1998).

    Article 

    Google Scholar
     

  • Tricot, G. et al. Collection, tumor contamination, and engraftment kinetics of highly purified hematopoietic progenitor cells to support high dose therapy in multiple myeloma. Blood 91, 4489–4495 (1998).

    Article 

    Google Scholar
     

  • Müller, A. M. S. et al. Long-term outcome of patients with metastatic breast cancer treated with high-dose chemotherapy and transplantation of purified autologous hematopoietic stem cells. Biol. Blood Marrow Transplant. 18, 125–133 (2012).

    Article 

    Google Scholar
     

  • Michallet, M. et al. Transplantation with selected autologous peripheral blood CD34+Thy1+ hematopoietic stem cells (HSCs) in multiple myeloma: impact of HSC dose on engraftment, safety, and immune reconstitution. Exp. Hematol. 28, 858–870 (2000).

    Article 

    Google Scholar
     

  • Vose, J. M. et al. Transplantation of highly purified CD34+Thy-I+ hematopoietic stem cells in patients with recurrent indolent non-Hodgkin’s lymphoma. Biol. Blood Marrow Transplant. 7, 680–687 (2001).

    Article 

    Google Scholar
     

  • Kikuchi, T. et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 548, 592–596 (2017).

    Article 

    Google Scholar
     

  • Doi, D., Gaiser, J., Grummitt, D., Knöbel, S. & Takahashi, J. GMP-compliant microchip based cell sorting of iPSCs-derived dopaminergic progenitors [Poster]. https://static.miltenyibiotec.com/asset/150655405641/document_5d7p4psfsh46jbrc45eu500f52?content-disposition=inline (2019).

  • Molday, R. S., Yen, S. P. S. & Rembaum, A. Application of magnetic microspheres in labelling and separation of cells. Nature 268, 437–438 (1977).

    Article 

    Google Scholar
     

  • Miltenyi, S., Müller, W., Weichel, W. & Radbruch, A. High gradient magnetic cell separation with MACS. Cytometry 11, 231–238 (1990).

    Article 

    Google Scholar
     

  • Moore, D. K. et al. Isolation of B-cells using Miltenyi MACS bead isolation kits. PLoS ONE 14, e0213832 (2019).

    Article 

    Google Scholar
     

  • Generali, M. et al. Autologous endothelialized small-caliber vascular grafts engineered from blood-derived induced pluripotent stem cells. Acta Biomater. 97, 333–343 (2019).

    Article 

    Google Scholar
     

  • Park, S. S. et al. Intravitreal autologous bone marrow CD34+ cell therapy for ischemic and degenerative retinal disorders: preliminary phase 1 clinical trial findings. Investig. Ophthalmol. Vis. Sci. 56, 81–89 (2015).

    Article 

    Google Scholar
     

  • Meier-Ruge, W. et al. The laser in the Lowry technique for microdissection of freeze-dried tissue slices. Histochem. J. 8, 387–401 (1976).

    Article 

    Google Scholar
     

  • Niyaz, Y. et al. in Microarrays in Clinical Diagnostics (eds Joos, T. O. & Fortina, P.) 1–24 (Humana, 2005).

  • Haqqani, A. S. et al. Characterization of vascular protein expression patterns in cerebral ischemia/reperfusion using laser capture microdissection and ICAT‐nanoLC‐MS/MS. FASEB J. 19, 1809–1821 (2005).

    Article 

    Google Scholar
     

  • Mojsilovic-Petrovic, J., Nesic, M., Pen, A., Zhang, W. & Stanimirovic, D. Development of rapid staining protocols for laser-capture microdissection of brain vessels from human and rat coupled to gene expression analyses. J. Neurosci. Methods 133, 39–48 (2004).

    Article 

    Google Scholar
     

  • Johnsen, A. R., Hausner, M., Schnell, A. & Wuertz, S. Evaluation of fluorescently labeled lectins for noninvasive localization of extracellular polymeric substances in Sphingomonas biofilms. Appl. Environ. Microbiol. 66, 3487 (2000).

    Article 

    Google Scholar
     

  • Murray, G. I. (ed.) Laser Capture Microdissection. Methods in Molecular Biology, Vol. 1723 (Humana, 2018).

  • Hosokawa, M. & Morikawa, K. Augmentation of antitumor immune responses by the antitumor antibiotic bleomycin. Jpn. J. Cancer Chemother. 11, 2700–2708 (1984).

  • Eberle, F. C. et al. Immunoguided laser assisted microdissection techniques for DNA methylation analysis of archival tissue specimens. J. Mol. Diagnostics 12, 394–401 (2010).

    Article 

    Google Scholar
     

  • Buckanovich, R. J. et al. Use of immuno-LCM to identify the in situ expression profile of cellular constituents of the tumor microenvironment. Cancer Biol. Ther. 5, 635–642 (2006).

    Article 

    Google Scholar
     

  • Terstegge, S. et al. Laser-assisted selection and passaging of human pluripotent stem cell colonies. J. Biotechnol. 143, 224–230 (2009).

    Article 

    Google Scholar
     

  • Wysocki, L. J. & Sato, V. L. Panning for lymphocytes: a method for cell selection. Proc. Natl Acad. Sci. USA 75, 2844–2848 (1978).

    Article 

    Google Scholar
     

  • Mage, M. G., McHugh, L. L. & Rothstein, T. L. Mouse lymphocytes with and without surface immunoglobulin: preparative scale separation in polystyrene tissue culture dishes coated with specifically purified anti-immunoglobulin. J. Immunol. Methods 15, 47–56 (1977).

    Article 

    Google Scholar
     

  • Dittel, B. N. Depletion of specific cell populations by complement depletion. J. Vis. Exp. https://doi.org/10.3791/1487 (2010).

    Article 

    Google Scholar
     

  • Kacherovsky, N. et al. Traceless aptamer-mediated isolation of CD8+ T cells for chimeric antigen receptor T-cell therapy. Nat. Biomed. Eng. 3, 783–795 (2019).

    Article 

    Google Scholar
     

  • Gray, B. P., Requena, M. D., Nichols, M. D. & Sullenger, B. A. Aptamers as reversible sorting ligands for preparation of cells in their native state. Cell Chem. Biol. 27, 232–244.e7 (2020).

    Article 

    Google Scholar
     

  • Gawande, B. N. et al. Selection of DNA aptamers with two modified bases. Proc. Natl Acad. Sci. USA 114, 2898–2903 (2017).

    Article 

    Google Scholar
     

  • Tyagi, S. & Kramer, F. R. Molecular beacon probes that fluoresce on hybridization. Nat. Biotechnol. 14, 303–308 (1996).

    Article 

    Google Scholar
     

  • Huang, K. & Martí, A. A. Recent trends in molecular beacon design and applications. Anal. Bioanal. Chem. 402, 3091–3102 (2012).

    Article 

    Google Scholar
     

  • Ban, K. et al. Purification of cardiomyocytes from differentiating pluripotent stem cells using molecular beacons that target cardiomyocyte-specific mRNA. Circulation 128, 1897–1909 (2013).

    Article 

    Google Scholar
     

  • Klug, M. G., Soonpaa, M. H., Koh, G. Y. & Field, L. J. Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J. Clin. Invest. 98, 216–224 (1996).

    Article 

    Google Scholar
     

  • Hacein-Bey-Abina, S. et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Invest. 118, 3132–3142 (2008).

    Article 

    Google Scholar
     

  • Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731–740 (2022).

    Article 

    Google Scholar
     

  • Nakanishi, M. & Otsu, M. Development of Sendai virus vectors and their potential applications in gene therapy and regenerative medicine. Curr. Gene Ther. 12, 410–416 (2012).

    Article 

    Google Scholar
     

  • Nakanishi, H. & Saito, H. in Mammalian Cell Engineering: Methods and Protocols (ed. Kojima, R.) 73–86 (Springer, 2021).

  • Hirosawa, M. et al. Cell-type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch. Nucleic Acids Res 45, e118 (2017).

    Article 

    Google Scholar
     

  • Parr, C. J. C. et al. MicroRNA-302 switch to identify and eliminate undifferentiated human pluripotent stem cells. Sci. Rep. 6, 32532 (2016).

    Article 

    Google Scholar
     

  • Sunohara, T. et al. MicroRNA-based separation of cortico-fugal projection neuron-like cells derived from embryonic stem cells. Front. Neurosci. https://doi.org/10.3389/fnins.2019.01141 (2019).

    Article 

    Google Scholar
     

  • Tsujisaka, Y. et al. Purification of human iPSC-derived cells at large scale using microRNA switch and magnetic-activated cell sorting. Stem Cell Rep. 17, 1772–1785 (2022).

    Article 

    Google Scholar
     

  • Endo, K., Hayashi, K. & Saito, H. High-resolution identification and separation of living cell types by multiple microRNA-responsive synthetic mRNAs. Sci. Rep. 6, 21991 (2016).

    Article 

    Google Scholar
     

  • Endo, K., Hayashi, K. & Saito, H. Numerical operations in living cells by programmable RNA devices. Sci. Adv. https://doi.org/10.1126/sciadv.aax0835 (2019).

    Article 

    Google Scholar
     

  • Nakanishi, H. et al. Monitoring and visualizing microRNA dynamics during live cell differentiation using microRNA-responsive non-viral reporter vectors. Biomaterials 128, 121–135 (2017).

    Article 

    Google Scholar
     

  • Fujita, Y. et al. A versatile and robust cell purification system with an RNA-only circuit composed of microRNA-responsive ON and OFF switches. Sci. Adv. 8, eabj1793 (2022).

    Article 

    Google Scholar
     

  • DiAndreth, B., Wauford, N., Hu, E., Palacios, S. & Weiss, R. PERSIST platform provides programmable RNA regulation using CRISPR endoRNases. Nat. Commun. 13, 2582 (2022).

    Article 

    Google Scholar
     

  • Qian, Y. et al. Programmable RNA sensing for cell monitoring and manipulation. Nature 610, 713–721 (2022).

    Article 

    Google Scholar
     

  • Jiang, K. et al. Programmable eukaryotic protein synthesis with RNA sensors by harnessing ADAR. Nat. Biotechnol. 41, 698–707 (2022).

    Article 

    Google Scholar
     

  • Kaseniit, K. E. et al. Modular, programmable RNA sensing using ADAR editing in living cells. Nat. Biotechnol. 41, 482–487 (2022).

    Article 

    Google Scholar
     

  • Pardi, M. L., Wu, J., Kawasaki, S. & Saito, H. Synthetic RNA-based post-transcriptional expression control methods and genetic circuits. Adv. Drug. Deliv. Rev. 184, 114196 (2022).

    Article 

    Google Scholar
     

  • Chastagnier, L., Marquette, C. & Petiot, E. In situ transient transfection of 3D cell cultures and tissues, a promising tool for tissue engineering and gene therapy. Biotechnol. Adv. 68, 108211 (2023).

    Article 

    Google Scholar
     

  • Xue, L. et al. Rational design of bisphosphonate lipid-like materials for mRNA delivery to the bone microenvironment. J. Am. Chem. Soc. 144, 9926–9937 (2022).

    Article 

    Google Scholar
     

  • Ma, F. et al. Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection. Sci. Adv. 6, eabb4429 (2020).

    Article 

    Google Scholar
     

  • Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).

    Article 

    Google Scholar
     

  • Kameda, S., Ohno, H. & Saito, H. Synthetic circular RNA switches and circuits that control protein expression in mammalian cells. Nucleic Acids Res. 51, E24 (2023).

    Article 

    Google Scholar
     

  • & Yoshioka, N. et al. Efficient generation of human iPS cells by a synthetic self-replicative RNA. Cell Stem Cell 13, 246–254 (2012).

    Article 

    Google Scholar
     

  • Karikó, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).

    Article 

    Google Scholar
     

  • Yoshihara, M., Hayashizaki, Y. & Murakawa, Y. Genomic instability of iPSCs: challenges towards their clinical applications. Stem Cell Rev. Rep. 13, 7–16 (2017).

    Article 

    Google Scholar
     

  • Ji, J. et al. Elevated coding mutation rate during the reprogramming of human somatic cells into induced pluripotent stem cells. Stem Cell 30, 435–440 (2012).

    Article 

    Google Scholar
     

  • Oikonomopoulos, A., Kitani, T. & Wu, J. C. Pluripotent stem cell-derived cardiomyocytes as a platform for cell therapy applications: progress and hurdles for clinical translation. Mol. Ther. 26, 1624–1634 (2018).

    Article 

    Google Scholar
     

  • Chehelgerdi, M. et al. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol. Cancer 22, 189 (2023).

    Article 

    Google Scholar
     

  • Nelson, J. et al. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci. Adv. 6, eaaz6893 (2020).

    Article 

    Google Scholar
     

  • Mulroney, T. E. et al. N 1-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting. Nature 625, 189–194 (2024).

    Article 

    Google Scholar
     

  • Takahashi, H. et al. BCG vaccinations drive epigenetic changes to the human T cell receptor: restored expression in type 1 diabetes. Sci. Adv. 8, eabq7240 (2022).

    Article 

    Google Scholar
     

  • Yamaguchi, Y. et al. Consecutive BNT162b2 mRNA vaccination induces short-term epigenetic memory in innate immune cells. JCI Insight 7, e163347 (2022).

    Article 

    Google Scholar
     

  • Kim, J. Y., Nam, Y., Rim, Y. A. & Ju, J. H. Review of the current trends in clinical trials involving induced pluripotent stem cells. Stem Cell Rev. Rep. 18, 142–154 (2022).

    Article 

    Google Scholar
     

  • Mandai, M. et al. Autologous induced stem-cell–derived retinal cells for macular degeneration. N. Engl. J. Med. 376, 1038–1046 (2017).

    Article 

    Google Scholar
     

  • Ikeda, M. I. O. et al. High-purity isolation for genotyping rare cancer cells from blood using a microfluidic chip cell sorter. Anticancer Res. 42, 407–417 (2022).

    Article 

    Google Scholar
     

  • Menasché, P. et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur. Heart J. 36, 2011–2017 (2015).

    Article 

    Google Scholar