Search
Close this search box.

Purification, characterization and three-dimensional structure prediction of multicopper oxidase Laccases from Trichoderma lixii FLU1 and Talaromyces pinophilus FLU12 – Scientific Reports

  • Mishra, S. et al. Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Front. Bioeng. Biotechnol. 9, 1–26. https://doi.org/10.3389/fbioe.2021.632059 (2021).

    Article 

    Google Scholar
     

  • Zafra, G. & Cortés-Espinosa, D. V. Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: A mini review. Environ. Sci. Pollut. Res. 22, 19426–19433. https://doi.org/10.1007/s11356-015-5602-4 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Frisvad, J. C. Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Front. Microbiol. 5, 1–7. https://doi.org/10.3389/fmicb.2014.00773 (2015).

    Article 

    Google Scholar
     

  • Mate, D. M. & Alcalde, M. Laccase: A multi-purpose biocatalyst at the forefront of biotechnology. Microb. Biotechnol. 10, 1457–1467. https://doi.org/10.1111/1751-7915.12422 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuo, R. & Fan, F. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. Sci. Total Environ. 778, 146132. https://doi.org/10.1016/j.scitotenv.2021.146132 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L., Zhang, X., Zhang, M., Zhu, Y. & Zhuo, R. Removal of heavy-metal pollutants by white rot fungi: Mechanisms, achievements, and perspectives. J. Clean. Prod. 354, 131681. https://doi.org/10.1016/j.jclepro.2022.131681 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kumar, A. & Chandra, R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 6, e03170. https://doi.org/10.1016/j.heliyon.2020.e03170 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, P. et al. Degradation of several polycyclic aromatic hydrocarbons by Laccase in reverse micelle system. Sci. Total Environ. 708, 134970–134970. https://doi.org/10.1016/j.scitotenv.2019.134970 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S., Zhu, M., Guo, X., Yang, B. & Zhuo, R. Coupling of Fenton reaction and white rot fungi for the degradation of organic pollutants. Ecotoxicol. Environ. Saf. 254, 114697. https://doi.org/10.1016/j.ecoenv.2023.114697 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, X. et al. Copper removal from aqueous solutions by white rot fungus Pleurotus ostreatus GEMB-PO1 and its potential in co-remediation of copper and organic pollutants. Bioresour. Technol. 395, 130337. https://doi.org/10.1016/j.biortech.2024.130337 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Falade, A., Jaouani, A., Mabinya, L., Okoh, A. & Nwodo, U. Exoproduction and molecular characterization of peroxidase from Ensifer adhaerens. Appl. Sci. 9, 1–15. https://doi.org/10.3390/app9153121 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sondhi, S., Kaur, R. & Madan, J. Purification and characterization of a novel white highly thermo stable Laccase from a novel Bacillus sp. MSK-01 having potential to be used as anticancer agent. Int. J. Biol. Macromol. 170, 232–238. https://doi.org/10.1016/j.ijbiomac.2020.12.082 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Y. et al. Laccase directed lignification is one of the major processes associated with the defense response against pythium ultimum infection in apple roots. Front. Plant Sci. 12, 1862–1862. https://doi.org/10.3389/FPLS.2021.629776/BIBTEX (2021).

    Article 

    Google Scholar
     

  • Yang, C. H. et al. Involvement of Laccase2 in cuticle sclerotization of the whitefly, Bemisia tabaci middle East-Asia minor 1. Insects 13, 471. https://doi.org/10.3390/insects13050471 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakamoto, Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. Fungal Biol. Rev. 32, 236–248. https://doi.org/10.1016/J.FBR.2018.02.003 (2018).

    Article 

    Google Scholar
     

  • Yan, L., Xu, R., Bian, Y., Li, H. & Zhou, Y. Expression profile of Laccase gene family in white-rot basidiomycete Lentinula edodes under different environmental stresses. Genes 10, 1045–1045. https://doi.org/10.3390/GENES10121045 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, X. & Williamson, P. R. Role of Laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res. 5, 1–10. https://doi.org/10.1016/J.FEMSYR.2004.04.004 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williamson, P. R. Role of Laccase in the virulence of Talaromyces marneffei: A common link between AIDS-related fungal pathogens?. Virulence 7, 627–629. https://doi.org/10.1080/21505594.2016.1198867 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santo, M., Weitsman, R. & Sivan, A. The role of the copper-binding enzyme–Laccase–in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int. Biodeteriorat. Biodegrad. 84, 204–210. https://doi.org/10.1016/j.ibiod.2012.03.001 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Chauhan, P. S., Goradia, B. & Saxena, A. Bacterial laccase: Recent update on production, properties and industrial applications. 3 Biotech 7, 323–323. https://doi.org/10.1007/s13205-017-0955-7 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arregui, L. et al. Laccases: Structure, function, and potential application in water bioremediation. Microb. Cell Fact. https://doi.org/10.1186/s12934-019-1248-0 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali, W. B. et al. Enzyme properties of a laccase obtained from the transcriptome of the marine-derived fungus Stemphylium lucomagnoense. Int. J. Mol. Sci. 21, 1–16. https://doi.org/10.3390/ijms21218402 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Radveikienė, I., Vidžiūnaitė, R., Meškienė, R., Meškys, R. & Časaitė, V. Characterization of a yellow Laccase from Botrytis cinerea 241. J. Fungi 7, 1–16. https://doi.org/10.3390/jof7020143 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Agrawal, K. & Verma, P. Multicopper oxidase laccases with distinguished spectral properties: A new outlook. Heliyon 6, e03972–e03972. https://doi.org/10.1016/j.heliyon.2020.e03972 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mot, A. C. et al. “Yellow” Laccase from Sclerotinia sclerotiorum is a blue laccase that enhances its substrate affinity by forming a reversible tyrosyl-product adduct. Plos One 15, e0225530. https://doi.org/10.1371/journal.pone.0225530 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sekretaryova, A., Jones, S. M. & Solomon, E. I. O2 Reduction to water by high potential multicopper Oxidases: Contributions of the T1 copper site potential and the local environment of the trinuclear copper cluster. J. Am. Chem. Soc. 141, 11304–11314. https://doi.org/10.1021/jacs.9b05230 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Optimization of laccase-mediated benzo[a]pyrene oxidation and the bioremedial application in aged polycyclic aromatic hydrocarbons-contaminated soil. J. Health Sci. 56, 534–540. https://doi.org/10.1248/jhs.56.534 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Vipotnik, Z., Michelin, M. & Tavares, T. Development of a packed bed reactor for the removal of aromatic hydrocarbons from soil using Laccase/mediator feeding system. Microbiol. Res. 245, 126687–126687. https://doi.org/10.1016/j.micres.2020.126687 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ike, P. T. L., Birolli, W. G., dos Santos, D. M., Porto, A. L. M. & Souza, D. H. F. Biodegradation of anthracene and different PAHs by a yellow laccase from Leucoagaricus gongylophorus. Environ. Sci. Pollut. Res. 26, 8675–8684. https://doi.org/10.1007/s11356-019-04197-z (2019).

    Article 
    CAS 

    Google Scholar
     

  • Egbewale, S. O., Kumar, A., Mokoena, M. P. & Olaniran, A. O. Metabolic biodegradation pathway of fluoranthene by indigenous Trichoderma lixii and Talaromyces pinophilus spp. Catalysts 13, 791. https://doi.org/10.3390/catal13050791 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Gen. Microbiol. 31, 3017–3027. https://doi.org/10.1016/S0021-9258(19)52451-6 (1951).

    Article 

    Google Scholar
     

  • Zungu, N. S., Egbewale, S. O., Olaniran, A. O., Pérez-Fernández, M. & Magadlela, A. Soil nutrition, microbial composition and associated soil enzyme activities in KwaZulu-Natal grasslands and savannah ecosystems soils. Appl. Soil Ecol. 155, 103663–103663. https://doi.org/10.1016/j.apsoil.2020.103663 (2020).

    Article 

    Google Scholar
     

  • Wu, Y. R., Luo, Z. H., Kwok-Kei Chow, R. & Vrijmoed, L. L. P. Purification and characterization of an extracellular Laccase from the anthracene-degrading fungus Fusarium solani MAS2. Bioresour. Technol. 101, 9772–9777. https://doi.org/10.1016/j.biortech.2010.07.091 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ning, Y.-J. et al. An extracellular yellow Laccase with potent dye decolorizing ability from the fungus Leucoagaricus naucinus LAC-04. Int. J. Biol. Macromol. 93, 837–842. https://doi.org/10.1016/j.ijbiomac.2016.09.046 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Setlhare, B., Kumar, A., Mokoena, M. P., Pillay, B. & Olaniran, A. O. Phenol hydroxylase from Pseudomonas sp. KZNSA: Purification, characterization and prediction of three-dimensional structure. Int. J. Biol. Macromol. 146, 1000–1008. https://doi.org/10.1016/j.ijbiomac.2019.09.224 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, Z. et al. Folding non-homology proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Rep. Methods 1, 100014. https://doi.org/10.1016/j.crmeth.2021.100014 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J. & Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res. 43, W174–W181. https://doi.org/10.1093/nar/gkv342 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, C., Freddolino, P. L. & Zhang, Y. COFACTOR: Improved protein function prediction by combining structure, sequence and protein–protein interaction information. Nucleic Acids Res. 45, W291–W299. https://doi.org/10.1093/nar/gkx366 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191. https://doi.org/10.1093/bioinformatics/btp033 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027. https://doi.org/10.1093/molbev/msab120 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zelinkova, Z. & Wenzl, T. The occurrence of 16 EPA PAHs in food—A review. Polycycl. Aromat. Compd. 35, 248–284. https://doi.org/10.1080/10406638.2014.918550 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cambria, M. T., Minniti, Z., Librando, V. & Cambria, A. Degradation of polycyclic aromatic hydrocarbons by Rigidoporus lignosus and its laccase in the presence of redox mediators. Appl. Biochem. Biotechnol. 149, 1–8. https://doi.org/10.1007/s12010-007-8100-4 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ezike, T. C., Ezugwu, A. L., Udeh, J. O., Eze, S. O. O. & Chilaka, F. C. Purification and characterisation of new laccase from Trametes polyzona WRF03. Biotechnol. Rep. 28, e00566. https://doi.org/10.1016/j.btre.2020.e00566 (2020).

    Article 

    Google Scholar
     

  • Mukhopadhyay, M. & Banerjee, R. Purification and biochemical characterization of a newly produced yellow Laccase from Lentinus squarrosulus MR13. 3 Biotech 5, 227–236. https://doi.org/10.1007/s13205-014-0219-8 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Agrawal, K., Bhardwaj, N., Kumar, B., Chaturvedi, V. & Verma, P. Process optimization, purification and characterization of alkaline stable white laccase from Myrothecium verrucaria ITCC-8447 and its application in delignification of agroresidues. Int. J. Biol. Macromol. 125, 1042–1055. https://doi.org/10.1016/j.ijbiomac.2018.12.108 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schückel, J., Matura, A. & van Pée, K. H. One-copper Laccase-related enzyme from Marasmius sp.: Purification, characterization and bleaching of textile dyes. Enz. Microb. Technol. 48, 278–284. https://doi.org/10.1016/j.enzmictec.2010.12.002 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Jeon, S. J. & Lim, S. J. Purification and characterization of the laccase involved in dye decolorization by the white-rot fungus Marasmius scorodonius. J. Microbiol. Biotechnol. 27, 1120–1127. https://doi.org/10.4014/jmb.1701.01004 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mtibaà, R. et al. Purification and characterization of a fungal laccase from the ascomycete Thielavia sp. and its role in the decolorization of a recalcitrant dye. Int. Biodeteriorat. Biodegrad. 120, 1744–1751. https://doi.org/10.1016/j.ijbiomac.2018.09.175 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, D., Zhang, X., Cui, D. & Zhao, M. Characterisation of a novel white laccase from the deuteromycete fungus Myrothecium verrucaria NF-05 and its decolourisation of dyes. Plos One 7, e38817. https://doi.org/10.1371/journal.pone.0038817 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Othman, A. M., Elsayed, M. A., Elshafei, A. M. & Hassan, M. M. Purification and biochemical characterization of two isolated Laccase isoforms from Agaricus bisporus CU13 and their potency in dye decolorization. Int. J. Biol. Macromol. 113, 1142–1148. https://doi.org/10.1016/j.ijbiomac.2018.03.043 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Navada, K. K. & Kulal, A. Kinetic characterization of purified Laccase from Trametes hirsuta: A study on Laccase catalyzed biotransformation of 1,4-dioxane. Biotechnol. Lett. 43, 613–626. https://doi.org/10.1007/s10529-020-03038-1 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sadeghian-Abadi, S., Rezaei, S., Yousefi-Mokri, M. & Faramarzi, M. A. Enhanced production, one-step affinity purification, and characterization of Laccase from solid-state culture of Lentinus tigrinus and delignification of pistachio shell by free and immobilized enzyme. J. Environ. Manag. 244, 235–246. https://doi.org/10.1016/j.jenvman.2019.05.058 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bagewadi, Z. K., Mulla, S. I. & Ninnekar, H. Z. Purification and immobilization of laccase from Trichoderma harzianum strain HZN10 and its application in dye decolorization. J. Genet. Eng. Biotechnol. 15, 139–150. https://doi.org/10.1016/j.jgeb.2017.01.007 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X., Zain Ul Arifeen, M., Xue, Y. & Liu, C. Genome-wide characterization of laccase gene family in Schizophyllum commune 20R–7-F01, isolated from deep sediment 2 km below the seafloor. Front. Microbiol. 13, 923451. https://doi.org/10.3389/fmicb.2022.923451 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, X., Zhang, Y., Liang, M., Kong, W. & Liu, J. The citrus Laccase gene CsLAC18 contributes to cold tolerance. Int. J. Mol. Sci. 23, 14509 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, V., Upadhyay, L. S. B. & Vasanth, D. Extracellular thermostable Laccase-like enzymes from Bacillus licheniformis strains: Production, purification and characterization. Appl. Biochem. Microbiol. 56, 420–432. https://doi.org/10.1134/S0003683820040146 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gutiérrez-Antón, M. et al. Improvement of Laccase production by Thielavia terrestris Co3Bag1. Enhancing the bio-catalytic performance of the native thermophilic TtLacA via immobilization in copper alginate gel beads. J. Fungi 9, 308 (2023).

    Article 

    Google Scholar
     

  • Chatterjee, R., Johansson, K., Järnström, L. & Jönsson, L. J. Evaluation of the potential of fungal and plant Laccases for active-packaging applications. J. Agric. Food Chem. 59, 5390–5395. https://doi.org/10.1021/jf103811g (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quynh, D. T., Hoang, N. H., Lan, N. N., Hoang, L. V. & Nghi, D. H. Cloning, experession, and characterization of a Laccase from the white rot fungi Pleurotus pulmonarius MPN18. VNU J. Sci. Nat. Sci. Technol. 39, 59–67. https://doi.org/10.25073/2588-1140/vnunst.5312 (2023).

    Article 

    Google Scholar
     

  • Lin, Y. et al. Purification and characterization of a novel Laccase from Coprinus cinereus and decolorization of different chemically dyes. Mol. Biol. Rep. 40, 1487–1494. https://doi.org/10.1007/s11033-012-2191-x (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murugesan, K., Kim, Y. M., Jeon, J. R. & Chang, Y. S. Effect of metal ions on reactive dye decolorization by laccase from Ganoderma lucidum. J. Hazard. Mater. 168, 523–529. https://doi.org/10.1016/j.jhazmat.2009.02.075 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagai, M. et al. Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Appl. Microbiol. Biotechnol. 60, 327–335. https://doi.org/10.1007/s00253-002-1109-2 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, G. Q., Wang, Y. F., Zhang, X. Q., Ng, T. B. & Wang, H. X. Purification and characterization of a novel Laccase from the edible mushroom Clitocybe maxima. Process Biochem. 45, 627–633. https://doi.org/10.1016/j.procbio.2009.12.010 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Rezaei, S., Shahverdi, A. R. & Faramarzi, M. A. Isolation, one-step affinity purification, and characterization of a polyextremotolerant Laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp. Bioresour. Technol. 230, 67–75. https://doi.org/10.1016/j.biortech.2017.01.036 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sadhasivam, S., Savitha, S., Swaminathan, K. & Lin, F.-H. Production, purification and characterization of mid-redox potential Laccase from a newly isolated Trichoderma harzianum WL1. Process Biochem. 43, 736–742. https://doi.org/10.1016/j.procbio.2008.02.017 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Lueangjaroenkit, P. et al. Two Manganese peroxidases and a Laccase of Trametes polyzona KU-RNW027 with novel properties for dye and pharmaceutical product degradation in redox mediator-free system. Mycobiology 47, 217–229. https://doi.org/10.1080/12298093.2019.1589900 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giardina, P. et al. Protein and gene structure of a blue laccase from Pleurotus ostreatus. Biochem. J. 341, 655–663. https://doi.org/10.1042/BJ3410655 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cázares-García, S. V., Vázquez-Garcidueñas, M. S. & Vázquez-Marrufo, G. Structural and phylogenetic analysis of Laccases from Trichoderma: A bioinformatic approach. Plos One 8, e55295. https://doi.org/10.1371/journal.pone.0055295 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nadar, S. S. & Rathod, V. K. Amino acid induced hyper activation of laccase and its application in dye degradation. Biocatal. Agric. Biotechnol. 18, 101064. https://doi.org/10.1016/j.bcab.2019.101064 (2019).

    Article 

    Google Scholar
     

  • Gomez-Fernandez, B. J., Risso, V. A., Sanchez-Ruiz, J. M. & Alcalde, M. Consensus design of an evolved high-redox potential Laccase. Front. Bioeng. Biotechnol. 8, 354–354. https://doi.org/10.3389/FBIOE.2020.00354/BIBTEX (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehra, R., Muschiol, J., Meyer, A. S. & Kepp, K. P. A structural-chemical explanation of fungal Laccase activity. Sci. Rep. 8, 1–16. https://doi.org/10.1038/s41598-018-35633-8 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kallio, J. P. et al. Structure-function studies of a Melanocarpus albomyces Laccase suggest a pathway for oxidation of phenolic compounds. J. Mol. Biol. 392, 895–909. https://doi.org/10.1016/j.jmb.2009.06.053 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernández-Fueyo, E., Ruiz-Dueñas, F. J., MikiY, M. M. J., Hammel, K. E. & Martínez, A. T. Lignin-degrading peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora. J. Biol. Chem. 287, 16309–16916. https://doi.org/10.1074/jbc.M112.356378 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Fathi-Roudsari, M., Behmanesh, M., Salmanian, A.-H., Sadeghizadeh, M. & Khajeh, K. Iranian biomedical functional surface display of laccase in a phenol-inducible bacterial circuit for bioremediation purposes. Iran Biomed. J. 22, 202–209. https://doi.org/10.22034/ibj.22.3.202 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, Q. et al. Laccase GhLac1 modulates broad-spectrum biotic stress tolerance via manipulating phenylpropanoid pathway and jasmonic acid synthesis. Plant Physiol. 176, 1808–1823. https://doi.org/10.1104/pp.17.01628 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bankole, P. O., Semple, K. T., Jeon, B. H. & Govindwar, S. P. Biodegradation of fluorene by the newly isolated marine-derived fungus, Mucor irregularis strain bpo1 using response surface methodology. Ecotoxicol. Environ. Saf. 208, 111619–111619. https://doi.org/10.1016/j.ecoenv.2020.111619 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, W., Zhang, W., Gan, Y., Yang, J. & Zhang, S. Laccase immobilization with metal-organic frameworks: Current status, remaining challenges and future perspectives. Crit. Rev. Environ. Sci. Technol. 52, 1282–1324. https://doi.org/10.1080/10643389.2020.1854565 (2022).

    Article 

    Google Scholar
     

  • Oliva-Taravilla, A., Tomás-Pejó, E., Demuez, M., González-Fernández, C. & Ballesteros, M. Inhibition of cellulose enzymatic hydrolysis by Laccase-derived compounds from phenols. Biotechnol. Prog. 31, 700–706. https://doi.org/10.1002/BTPR.2068 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di Franco, A., Poujol, R., Baurain, D. & Philippe, H. Evaluating the usefulness of alignment filtering methods to reduce the impact of errors on evolutionary inferences. BMV Evol. Biol. 19, 21. https://doi.org/10.1186/s12862-019-1350-2 (2019).

    Article 

    Google Scholar
     

  • Malhis, N., Jones, S. J. M. & Gsponer, J. Improved measures for evolutionary conservation that exploit taxonomy distances. Nat. Commun. 10, 1556. https://doi.org/10.1038/s41467-019-09583-2 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, A. K., Katari, S. K., Umamaheswari, A. & Raj, A. In silico exploration of lignin peroxidase for unraveling the degradation mechanism employing lignin model compounds. RCS Adv. 11, 14632–14653. https://doi.org/10.1039/D0RA10840E (2021).

    Article 
    CAS 

    Google Scholar
     

  • Vanajothi, R. et al. In silico and in vitro analysis of Nigella sativa bioactives against Chorismate synthase of Listeria monocytogenes: A target protein for biofilm inhibition. Appl. Biochem. Biotechnol. 195, 519–533. https://doi.org/10.1007/s12010-022-04157-3 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nelapati, A. K., Meena, S., Singh, A. K., Bhakta, N. & PonnanEttiyappan, J. In silico structural and functional analysis of Bacillus uricases. Curr. Prot. 18, 124–142. https://doi.org/10.2174/1570164617999200512081127 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Guo, X. et al. Characterization of a highly thermostable and organic solvent-tolerant copper-containing polyphenol Oxidase with dye-decolorizing ability from Kurthia huakuii LAM0618T. Plos One 11, e0164810. https://doi.org/10.1371/JOURNAL.PONE.0164810 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Endo, K. et al. Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. J. Biochem. 133, 671–677. https://doi.org/10.1093/jb/mvg086 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, A., Kameshwar, S., Barber, R. & Qin, W. Comparative modeling and molecular docking analysis of white, brown and soft rot fungal Laccases using lignin model compounds for understanding the structural and functional properties of Laccases. J. Mol. Graph Model 79, 15–26. https://doi.org/10.1016/j.jmgm.2017.10.019 (2018).

    Article 
    CAS 

    Google Scholar