Search
Close this search box.

Profiling expression strategies for a type III polyketide synthase in a lysate-based, cell-free system – Scientific Reports

  • Bérdy, J. Bioactive microbial metabolites. J. Antibiot. 58, 1–26 (2005).


    Google Scholar
     

  • Baltz, R. H. Gifted microbes for genome mining and natural product discovery. J. Ind. Microbiol. Biotechnol. 44, 573–588 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Palazzotto, E., Tong, Y., Lee, S. Y. & Weber, T. Synthetic biology and metabolic engineering of actinomycetes for natural product discovery. Biotechnol. Adv. 37, 107366 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Musiol-Kroll, E. M., Tocchetti, A., Sosio, M. & Stegmann, E. Challenges and advances in genetic manipulation of filamentous actinomycetes: The remarkable producers of specialized metabolites. Nat. Prod. Rep. 36, 1351–1369 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Drufva, E. E., Sword, T. T. & Bailey, C. B. Metabolic engineering of actinomycetes for natural product discovery. In Natural Products from Actinomycetes: Diversity, Ecology and Drug Discovery (eds Rai, R. V. & Bai, J. A.) 267–307 (Springer, 2022).


    Google Scholar
     

  • Stevens, D. C., Hari, T. P. A. & Boddy, C. N. The role of transcription in heterologous expression of polyketides in bacterial hosts. Nat. Prod. Rep. 30, 1391–1411 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Wagner, L., Jules, M. & Borkowski, O. What remains from living cells in bacterial lysate-based cell-free systems. Comput. Struct. Biotechnol. J. 21, 3173–3182 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuckey, C., Asahara, H., Zhou, Y. & Chong, S. Protein synthesis using a reconstituted cell-free system. Curr. Protoc. Mol. Biol. 108, 16.31.1-16.31.22 (2014).

    PubMed 

    Google Scholar
     

  • Dinglasan, J. L. N. & Doktycz, M. J. Rewiring cell-free metabolic flux in E. coli lysates using a block-push-pull approach. Synth. Biol. https://doi.org/10.1093/synbio/ysad007 (2023).

    Article 

    Google Scholar
     

  • Garcia, D. C. et al. A lysate proteome engineering strategy for enhancing cell-free metabolite production. Metab. Eng. Commun. 12, e00162 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dinglasan, J. L. N., Reeves, D. T., Hettich, R. L. & Doktycz, M. J. Liquid chromatography coupled to refractive index or mass spectrometric detection for metabolite profiling in lysate-based cell-free systems. J. Vis. Exp. https://doi.org/10.3791/62852 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Mouncey, N. J., Otani, H., Udwary, D. & Yoshikuni, Y. New voyages to explore the natural product galaxy. J. Ind. Microbiol. Biotechnol. 46, 273–279 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Bogart, J. W. et al. Cell-free exploration of the natural product chemical space. ChemBioChem 22, 84–91 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Ji, X., Liu, W.-Q. & Li, J. Recent advances in applying cell-free systems for high-value and complex natural product biosynthesis. Curr. Opin. Microbiol. 67, 102142 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Garenne, D. et al. Cell-free gene expression. Nat. Rev. Methods Primers 1, 49 (2021).

    CAS 

    Google Scholar
     

  • Moore, S. J. et al. Rapid acquisition and model-based analysis of cell-free transcription-translation reactions from nonmodel bacteria. Proc. Natl. Acad. Sci. USA 115, E4340–E4349 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    PubMed 

    Google Scholar
     

  • Lentini, R. et al. Fluorescent proteins and in vitro genetic organization for cell-free synthetic biology. ACS Synth. Biol. 2, 482–489 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Jew, K. et al. Characterizing and improving pET vectors for cell-free expression. Front. Bioeng. Biotechnol. 10, 895069 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burrington, L. R., Watts, K. R. & Oza, J. P. Characterizing and improving reaction times for E. coli-based cell-free protein synthesis. ACS Synth. Biol. 10, 1821–1829 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, M. et al. Maximizing heterologous expression of engineered type I polyketide synthases: Investigating codon optimization strategies. ACS Synth. Biol. 12, 3366–3380 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Funa, N. et al. A new pathway for polyketide synthesis in microorganisms. Nature 400, 897–899 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Funa, N., Ohnishi, Y., Ebizuka, Y. & Horinouchi, S. Properties and substrate specificity of RppA, a chalcone synthase-related polyketide synthase in Streptomyces griseus. J. Biol. Chem. 277, 4628–4635 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, D. et al. Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria. Proc. Natl. Acad. Sci. USA 115, 9835–9844 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katsuyama, Y. & Ohnishi, Y. Type III polyketide synthases in microorganisms. Methods Enzymol. 515, 359–377 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. K., Newman, J. D. & Keasling, J. D. Catabolite repression of the propionate catabolic genes in Escherichia coli and Salmonella enterica: Evidence for involvement of the cyclic AMP receptor protein. J. Bacteriol. 187, 2793–2800 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, T. S. et al. BglBrick vectors and datasheets: A synthetic biology platform for gene expression. J. Biol. Eng. 5, 12 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dubendorff, J. W. & Studier, F. W. Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J. Mol. Biol. 219, 45–59 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • William Studier, F., Rosenberg, A. H., Dunn, J. J. & Dubendorff, J. W. [6] Use of T7 RNA polymerase to direct expression of cloned genes. Gene Expr. Technol. 185, 60–89 (1990).


    Google Scholar
     

  • Krefft, D., Papkov, A., Zylicz-Stachula, A. & Skowron, P. M. Thermostable proteins bioprocesses: The activity of restriction endonuclease-methyltransferase from Thermus thermophilus (RM.TthHB27I) cloned in Escherichia coli is critically affected by the codon composition of the synthetic gene. PLoS ONE 12, e0186633 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh, I. M., Bowman, M. A., Soto Santarriaga, I. F., Rodriguez, A. & Clark, P. L. Synonymous codon substitutions perturb cotranslational protein folding in vivo and impair cell fitness. Proc. Natl. Acad. Sci. USA 117, 3528–3534 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sword, T. T. et al. Expression of blue pigment synthetase a from Streptomyces lavenduale reveals insights on the effects of refactoring biosynthetic megasynthases for heterologous expression in Escherichia coli. Protein Expr. Purif. 210, 106317 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Chaney, J. L. et al. Widespread position-specific conservation of synonymous rare codons within coding sequences. PLoS Comput. Biol. 13, e1005531 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welch, M. et al. Design parameters to control synthetic gene expression in Escherichia coli. PLoS ONE 4, e7002 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mellitzer, A., Weis, R., Glieder, A. & Flicker, K. Expression of lignocellulolytic enzymes in Pichia pastoris. Microb. Cell Fact. 11, 61 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kodumal, S. J. et al. Total synthesis of long DNA sequences: Synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc. Natl. Acad. Sci. USA 101, 15573–15578 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, Z., Zhang, L., Han, X. & Zhang, Y. Codon optimization of the calf prochymosin gene and its expression in Kluyveromyces lactis. World J. Microbiol. Biotechnol. 26, 895–901 (2010).

    CAS 

    Google Scholar
     

  • Marlatt, N. M., Spratt, D. E. & Shaw, G. S. Codon optimization for enhanced Escherichia coli expression of human S100A11 and S100A1 proteins. Protein Expr. Purif. 73, 58–64 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Villalobos, A., Ness, J. E., Gustafsson, C., Minshull, J. & Govindarajan, S. Gene designer: A synthetic biology tool for constructing artificial DNA segments. BMC Bioinform. 7, 285 (2006).


    Google Scholar
     

  • Richardson, S. M., Wheelan, S. J., Yarrington, R. M. & Boeke, J. D. GeneDesign: Rapid, automated design of multikilobase synthetic genes. Genome Res. 16, 550–556 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mignon, C. et al. Codon harmonization: Going beyond the speed limit for protein expression. FEBS Lett. 592, 1554–1564 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Wright, G. et al. CHARMING: Harmonizing synonymous codon usage to replicate a desired codon usage pattern. Protein Sci. 31, 221–231 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, M. et al. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495, 111–115 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angov, E., Hillier, C. J., Kincaid, R. L. & Lyon, J. A. Heterologous protein expression is enhanced by harmonizing the codon usage frequencies of the target gene with those of the expression host. PLoS ONE 3, e2189 (2008).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spencer, P. S., Siller, E., Anderson, J. F. & Barral, J. M. Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. J. Mol. Biol. 422, 328–335 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shabalina, S. A., Spiridonov, N. A. & Kashina, A. Sounds of silence: Synonymous nucleotides as a key to biological regulation and complexity. Nucleic Acids Res. 41, 2073–2094 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilchrist, M. A., Chen, W.-C., Shah, P., Landerer, C. L. & Zaretzki, R. Estimating gene expression and codon-specific translational efficiencies, mutation biases, and selection coefficients from genomic data alone. Genome Biol. Evol. 7, 1559–1579 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke, T. F. & Clark, P. L. Rare codons cluster. PLoS ONE 3, e3412 (2008).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez, A., Wright, G., Emrich, S. & Clark, P. L. %MinMax: A versatile tool for calculating and comparing synonymous codon usage and its impact on protein folding. Protein Sci. 27, 356–362 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, Y., Gojobori, T. & Ikemura, T. Codon usage tabulated from international DNA sequence databases: Status for the year 2000. Nucleic Acids Res. 28, 292 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cope, A. L. & Gilchrist, M. A. Quantifying shifts in natural selection on codon usage between protein regions: A population genetics approach. BMC Genom. 23, 408 (2022).

    CAS 

    Google Scholar
     

  • Incha, M. R. et al. Leveraging host metabolism for bisdemethoxycurcumin production in Pseudomonas putida. Metab. Eng. Commun. 10, e00119 (2020).

    PubMed 

    Google Scholar
     

  • Dinglasan, J. L. N., Sword, T. T., Barker, J. W., Doktycz, M. J. & Bailey, C. B. Investigating and optimizing the lysate-based expression of nonribosomal peptide synthetases using a reporter system. ACS Synth. Biol. 12, 1447–1460 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • McKevitt, M. et al. Systematic cloning of Treponema pallidum open reading frames for protein expression and antigen discovery. Genome Res. 13, 1665–1674 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senda, N. et al. Development of an expression-tunable multiple protein synthesis system in cell-free reactions using T7-promoter-variant series. Synth. Biol. (Oxf.) 7, ysac029 (2022).

    PubMed 

    Google Scholar
     

  • Karim, A. S. et al. Modular cell-free expression plasmids to accelerate biological design in cells. Synth. Biol. (Oxf.) 5, ysaa019 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Swartz, J. R., Jewett, M. C. & Woodrow, K. A. Cell-free protein synthesis with prokaryotic combined transcription-translation. Methods Mol. Biol. 267, 169–182 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Z. Z. et al. Protocols for implementing an Escherichia coli based TX-TL cell-free expression system for synthetic biology. J. Vis. Exp. https://doi.org/10.3791/50762 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garenne, D., Thompson, S., Brisson, A., Khakimzhan, A. & Noireaux, V. The all-E. coliTXTL toolbox 3.0: New capabilities of a cell-free synthetic biology platform. Synth. Biol. (Oxf.) 6, ysab017 (2021).

    PubMed 

    Google Scholar
     

  • Tokmakov, A. A. & Fukami, Y. Activation of T7 RNA polymerase in Xenopus oocytes and cell-free extracts. Genes Cells 15, 1136–1144 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Hagen, A. et al. In vitro analysis of carboxyacyl substrate tolerance in the loading and first extension modules of borrelidin polyketide synthase. Biochemistry 53, 5975–5977 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Hagen, A. et al. Engineering a polyketide synthase for in vitro production of adipic acid. ACS Synth. Biol. 5, 21–27 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Karig, D. K., Iyer, S., Simpson, M. L. & Doktycz, M. J. Expression optimization and synthetic gene networks in cell-free systems. Nucleic Acids Res. 40, 3763–3774 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Borkowski, O. et al. Cell-free prediction of protein expression costs for growing cells. Nat. Commun. 9, 1457 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brooks, R., Morici, L. & Sandoval, N. Cell free bacteriophage synthesis from engineered strains improves yield. ACS Synth. Biol. 12, 2418–2431 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, S. & Murray, R. M. Construction of incoherent feedforward loop circuits in a cell-free system and in cells. ACS Synth. Biol. 8, 606–610 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Levine, M. Z., Gregorio, N. E., Jewett, M. C., Watts, K. R. & Oza, J. P. Escherichia coli-based cell-free protein synthesis: Protocols for a robust, flexible, and accessible platform technology. J. Vis. Exp. https://doi.org/10.3791/58882 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Karim, A. S. et al. In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design. Nat. Chem. Biol. 16, 912–919 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Vögeli, B. et al. Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria. Nat. Commun. 13, 3058 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sivashanmugam, A. et al. Practical protocols for production of very high yields of recombinant proteins using Escherichia coli. Protein Sci. 18, 936–948 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geurink, P. P. et al. Profiling DUBs and Ubl-specific proteases with activity-based probes. Methods Enzymol. 618, 357–387 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khlebnikov, A., Risa, O., Skaug, T., Carrier, T. A. & Keasling, J. D. Regulatable arabinose-inducible gene expression system with consistent control in all cells of a culture. J. Bacteriol. 182, 7029–7034 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chappell, J., Jensen, K. & Freemont, P. S. Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology. Nucleic Acids Res. 41, 3471–3481 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, G., Rodriguez, A., Clark, P. L. & Emrich, S. A new look at codon usage and protein expression. Epic Ser. Comput. 60, 104–112 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hillson, N. J., Rosengarten, R. D. & Keasling, J. D. j5 DNA assembly design automation software. ACS Synth. Biol. 1, 14–21 (2012).

    CAS 
    PubMed 

    Google Scholar