Production of iron enriched Saccharomyces boulardii: impact of process variables – Scientific Reports

  • Ramos-Alonso, L. et al. Molecular strategies to increase yeast iron accumulation and resistance. Metallomics 10, 1245–1256. https://doi.org/10.1039/c8mt00124c (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gafter-Gvili, A., Schechter, A. & Rozen-Zvi, B. Iron deficiency anemia in chronic kidney disease. Acta Haematol. 142, 44–50. https://doi.org/10.1159/000496492 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amils, R. Chemotroph. Encyclopedia of Astrobiology 293–378 (Springer, 2011). https://doi.org/10.1007/978-3-642-11274-4.

    Book 

    Google Scholar
     

  • Rodgers, G. M. & Gilreath, J. A. The role of intravenous iron in the treatment of anemia associated with cancer and chemotherapy. Acta Haematol. 142, 13–20. https://doi.org/10.1159/000496967 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Halterman, J. S., Kaczorowski, J. M., Aligne, C. A., Auinger, P. & Szilagyi, P. G. Iron deficiency and cognitive achievement among school-aged children and adolescents in the United States. Pediatrics 107, 1381–1386. https://doi.org/10.1542/peds.107.6.1381 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • World Health Organization. Anaemia in women and children [Internet]. https://www.who.int/data/gho/data/themes/topics/anaemia_in_women_and_children (2023).

  • World Health Organization. The Global Prevalence of Anaemia in 2011 43 (World Health Organization, 2015).

  • Saito, H. Metabolism of iron stores. Nagoya J. Med. Sci. 76, 235–254 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garberg, P., Ståhl, A., Warholm, M. & Högberg, J. Studies of the role of DNA fragmentation in selenium toxicity. Biochem. Pharmacol. 37, 3401–3406. https://doi.org/10.1016/0006-2952(88)90688-0 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goff, J. P. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. J. Dairy Sci. 101, 2763–2813. https://doi.org/10.3168/jds.2017-13112 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zielińska-Dawidziak, M. Plant ferritin—a source of iron to prevent its deficiency. Nutrients 7, 1184–1201. https://doi.org/10.3390/nu7021184 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. G. et al. Preparation of S-iron-enriched yeast using siderophores and its effect on iron deficiency anemia in rats. Food Chem. 365, 130508. https://doi.org/10.1016/j.foodchem.2021.130508 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, Y., Guo, X., He, X., Zhang, B. & Liu, S. Construction of a high-biomass, iron-enriched yeast strain and study on distribution of iron in the cells of Saccharomyces cerevisiae. Biotechnol. Lett. 26, 311–315. https://doi.org/10.1023/b:bile.0000015449.30186.90 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kyyaly, M. A., Powell, C. & Ramadan, E. Preparation of iron-enriched baker’s yeast and its efficiency in recovery of rats from dietary iron deficiency. Nutrition 31, 1155–1164. https://doi.org/10.1016/j.nut.2015.04.017 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, Y. et al. Effect of high efficiency digestion and utilization of organic iron made by Saccharomyces cerevisiae on antioxidation and caecum microflora in weaned piglets. Anim. (Basel) 31, 498. https://doi.org/10.3390/ani13030498 (2023).

    Article 

    Google Scholar
     

  • Philpott, C. C. & Protchenko, O. Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot. Cell. 7, 20–27. https://doi.org/10.1128/EC.00354-07 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. G., Peng, Y. N., Li, X. R., Ma, G. D. & Chen, X. Q. Screening of iron-enriched fungus from natural environment and evaluation of organically bound iron bioavailability in rats. Food Sci. Technol. Int. 35, 58–65. https://doi.org/10.1590/1678-457X.6454 (2015).

    Article 

    Google Scholar
     

  • Li, L., Chen, O. S., McVey Ward, D. & Kaplan, J. CCC1 is a transporter that mediates vacuolar iron storage in yeast. J. Biol. Chem. 276, 29515–29519. https://doi.org/10.1074/jbc.M103944200 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Varga, E. & Maráz, A. Yeast cells as sources of essential microelements and vitamins B1 and B2. Acta Aliment. 31, 393–405. https://doi.org/10.1556/aalim.31.2002.4.8 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Raguzzi, F., Lesuisse, E. & Crichton, R. R. Iron storage in Saccharomyces cerevisiae. FEBS Lett. 231, 253–258. https://doi.org/10.1016/0014-5793(88)80742-7 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Georgatsou, E. & Alexandraki, D. Regulated expression of the Saccharomyces cerevisiae Fre1p/Fre2p Fe/Cu reductase related genes. Yeast 15, 573–584. https://doi.org/10.1002/(SICI)1097-0061(199905)15:7%3c573::AID-YEA404%3e3.0.CO;2-7 (1999).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/(SICI)1097-0061(199905)15:73.0.CO;2-7″ data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291097-0061%28199905%2915%3A7%3C573%3A%3AAID-YEA404%3E3.0.CO%3B2-7″ aria-label=”Article reference 21″ data-doi=”10.1002/(SICI)1097-0061(199905)15:73.0.CO;2-7″>Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, T. P. & Rangan, C. Iron poisoning: A literature-based review of epidemiology, diagnosis, and management. Pediatr. Emerg. Care. 27, 978–985. https://doi.org/10.1097/PEC.0b013e3182302604 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • United States Department of Agriculture. Nutrients: Iron , Fe (mg) [Internet]. https://www.nal.usda.gov/sites/www.nal.usda.gov/files/iron.pdf (2018).

  • Ramírez-Cota, G. Y., López-Villegas, E. O., Jiménez-Aparicio, A. R. & Hernández-Sánchez, H. Modeling the ethanol tolerance of the probiotic yeast Saccharomyces cerevisiae var. boulardii CNCM I-745 for its possible use in a functional beer. Probiot. Antimicrob. Proteins 13, 187–194. https://doi.org/10.1007/s12602-020-09680-5 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Graff, S., Chaumeil, J. C., Boy, P., Lai-Kuen, R. & Charrueau, C. Formulations for protecting the probiotic Saccharomyces boulardii from degradation in acidic condition. Biol. Pharm. Bull. 31, 266–272. https://doi.org/10.1248/bpb.31.266 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hudson, L. E. et al. Characterization of the probiotic yeast Saccharomyces boulardii in the healthy mucosal immune system. PLoS One. 11, e0153351. https://doi.org/10.1371/journal.pone.0153351 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwak, S. et al. Dissection and enhancement of prebiotic properties of yeast cell wall oligosaccharides through metabolic engineering. Biomaterials 282, 121379. https://doi.org/10.1016/j.biomaterials.2022.121379 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martínez-Garay, C. A., de Llanos, R., Romero, A. M., Martínez-Pastor, M. T. & Puig, S. Responses of Saccharomyces cerevisiae strains from different origins to elevated iron concentrations. Appl. Environ. Microbiol. 82, 1906–1916. https://doi.org/10.1128/AEM.03464-15 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nowosad, K., Sujka, M., Pankiewicz, U., Miklavčič, D. & Arczewska, M. Pulsed electric field (Pef) enhances iron uptake by the yeast Saccharomyces cerevisiae. Biomolecules 11, 850. https://doi.org/10.3390/biom11060850 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nowosad, K. & Sujka, M. The use of iron-enriched yeast for the production of flatbread. Molecules 26, 5204. https://doi.org/10.3390/molecules26175204 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaensly, F., Wille, G. M. F. C., Brand, D. & Bonfim, T. M. B. Iron enriched Saccharomyces cerevisiae maintains its fermenting power and bakery properties. Food Sci. Technol. 31, 980–983 (2011).

    Article 

    Google Scholar
     

  • Kumari, M. & Gupta, S. K. Response surface methodological (RSM) approach for optimizing the removal of trihalomethanes (THMs) and its precursor’s by surfactant modified magnetic nanoadsorbents (sMNP)—an endeavor to diminish probable cancer risk. Sci. Rep. 9, 18339. https://doi.org/10.1038/s41598-019-54902-8 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, K. P., Rai, P., Pandey, P. & Sinha, S. Modeling and optimization of trihalomethanes formation potential of surface water (a drinking water source) using Box-Behnken design. Environ. Sci. Pollut. Res. Int. 19, 113–127. https://doi.org/10.1007/s11356-011-0544-y (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malairuang, K., Krajang, M., Sukna, J., Rattanapradit, K. & Chamsart, S. High cell density cultivation of Saccharomyces cerevisiae with intensive multiple sequential batches together with a novel technique of fed-batch at cell level (FBC). Processes 8, 1–26. https://doi.org/10.3390/pr8101321 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, R., Lorantfy, B., Fusco, S., Olsson, L. & Franzén, C. J. Analysis of methods for quantifying yeast cell concentration in complex lignocellulosic fermentation processes. Sci. Rep. 11, 11293. https://doi.org/10.1038/s41598-021-90703-8 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olivares-Marin, I. K., González-Hernández, J. C., Regalado-Gonzalez, C. & Madrigal-Perez, L. A. Saccharomyces cerevisiae exponential growth kinetics in batch culture to analyze respiratory and fermentative metabolism. J. Vis. Exp. 30, 58192. https://doi.org/10.3791/58192 (2018).

    Article 

    Google Scholar
     

  • Esmaeili, S., Khosravi-Darani, K., Pourahmad, R. & Komeili, R. An experimental design for production of selenium-enriched yeast. World Appl. Sci. J. 19, 31–37. https://doi.org/10.5829/idosi.wasj.2012.19.01.2634 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Tafazzoli, K., Ghavami, M. & Khosravi-Darani, K. Investigation of impact of siderophore and process variables on production of iron-enriched Saccharomyces boulardii by Plackett-Burman design (Scientific Repot, 2024).

  • Saleh, A. K., El-Gendi, H., Soliman, N. A., El-Zawawy, W. K. & Abdel-Fattah, Y. R. Bioprocess development for bacterial cellulose biosynthesis by novel Lactiplantibacillus plantarum isolate along with characterization and antimicrobial assessment of fabricated membrane. Sci. Rep. 12, 2181. https://doi.org/10.1038/s41598-022-06117-7 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Bendary, M. A., Afifi, S. S., Moharam, M. E., Elsoud, M. M. A. & Gawdat, N. A. Optimization of Bacillus subtilis NRC1 growth conditions using response surface methodology for sustainable biosynthesis of gold nanoparticles. Sci. Rep. 12, 20882. https://doi.org/10.1038/s41598-022-25324-w (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prakash-Maran, J., Manikandan, S., Thirugnanasambandham, K., Vigna-Nivetha, C. & Dinesh, R. Box-Behnken design based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide. Carbohydr. Polym. 92, 604–611. https://doi.org/10.1016/j.carbpol.2012.09.020 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hazra, A. et al. Coenzyme and prosthetic group biosynthesis. Encycl. Microbiol 79–88, 2009. https://doi.org/10.1016/b978-012373944-5.00069-9 (2009).

    Article 

    Google Scholar
     

  • Coote, N. & Kirsop, B. H. Factors responsible for the decrease in ph during beer fermentations. J. Inst. Brew. 82, 149–153. https://doi.org/10.1002/j.2050-0416.1976.tb03739.x (1976).

    Article 
    CAS 

    Google Scholar
     

  • Elsayed, E. A. & Enshasy, H. E. Effects of different aeration rates and feeding strategies on cell growth and invertase production kinetics by Saccharomyces boulardii. JSIR 77, 575–582 (2018).

    CAS 

    Google Scholar
     

  • De La Fuente, G. & Sols, A. Transport of sugars in yeasts. II. Mechanisms of utilization of disaccharides and related glycosides. Biochim. Biophys. Acta 56, 49–62. https://doi.org/10.1016/0006-3002(62)90526-7 (1962).

    Article 
    PubMed 

    Google Scholar
     

  • Ohlenbusch, H. D. & Vogele, P. Methods of enzymatic analysis. Invertase 1974, 923–928. https://doi.org/10.1016/B978-0-12-091302-2.50081-5 (1974).

    Article 

    Google Scholar
     

  • O’Dell, B. L. Fructose and mineral metabolism. Am. J. Clin. Nutr. 58, 771S-778S. https://doi.org/10.1093/ajcn/58.5.771S (1993).

    Article 
    PubMed 

    Google Scholar
     

  • Charley, P. J., Sarkar, B., Stitt, C. F. & Saltman, P. Chelation of iron by sugars. Biochim. Biophys. Acta 69, 313–321. https://doi.org/10.1016/0006-3002(63)91264-2 (1963).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christides, T. Effects of carbohydrates on iron metabolism in intestinal and liver cells. University of Greenwich. https://gala.gre.ac.uk/id/eprint/23702/ (2016).

  • Baryga, A., Ziobro, R., Gumul, D., Rosicka-Kaczmarek, J. & Miskiewicz, K. Physicochemical properties and evaluation of antioxidant potential of sugar beet pulp—preliminary analysis for further use (future prospects). Agric. (Switz.) 13, 1–17. https://doi.org/10.3390/agriculture13051039 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Deseo, M. A., Elkins, A., Rochfort, S. & Kitchen, B. Antioxidant activity and polyphenol composition of sugarcane molasses extract. Food Chem. 314, 126180. https://doi.org/10.1016/j.foodchem.2020.126180 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buerkli, S. et al. The effect of a natural polyphenol supplement on iron absorption in adults with hereditary hemochromatosis. Eur. J. Nutr. 61, 2967–2977. https://doi.org/10.1007/s00394-022-02829-8 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brune, M., Rossander, L. & Hallberg, L. Iron absorption and phenolic compounds: Importance of different phenolic structures. Eur. J. Clin. Nutr. 43, 547–557 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Sousa, L., Oliveira, M. M., Pessôa, M. T. C. & Barbosa, L. A. Iron overload: Effects on cellular biochemistry. Clin. Chim. Acta 504, 180–189. https://doi.org/10.1016/j.cca.2019.11.029 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stockwell, B. R. et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285. https://doi.org/10.1016/j.cell.2017.09.021 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwun, M. S. & Lee, D. G. Ferroptosis-like death in microorganisms: A novel programmed cell death following lipid peroxidation. J. Microbiol. Biotechnol. 33, 992–997. https://doi.org/10.4014/jmb.2307.07002 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The oxygen-transferring ferment of respiration. Nobel Lecture. https://www.nobelprize.org/uploads/2018/06/warburg-lecture.pdf (1931).