
Ramos-Alonso, L. et al. Molecular strategies to increase yeast iron accumulation and resistance. Metallomics 10, 1245–1256. https://doi.org/10.1039/c8mt00124c (2018).
Gafter-Gvili, A., Schechter, A. & Rozen-Zvi, B. Iron deficiency anemia in chronic kidney disease. Acta Haematol. 142, 44–50. https://doi.org/10.1159/000496492 (2019).
Amils, R. Chemotroph. Encyclopedia of Astrobiology 293–378 (Springer, 2011). https://doi.org/10.1007/978-3-642-11274-4.
Rodgers, G. M. & Gilreath, J. A. The role of intravenous iron in the treatment of anemia associated with cancer and chemotherapy. Acta Haematol. 142, 13–20. https://doi.org/10.1159/000496967 (2019).
Halterman, J. S., Kaczorowski, J. M., Aligne, C. A., Auinger, P. & Szilagyi, P. G. Iron deficiency and cognitive achievement among school-aged children and adolescents in the United States. Pediatrics 107, 1381–1386. https://doi.org/10.1542/peds.107.6.1381 (2001).
World Health Organization. Anaemia in women and children [Internet]. https://www.who.int/data/gho/data/themes/topics/anaemia_in_women_and_children (2023).
World Health Organization. The Global Prevalence of Anaemia in 2011 43 (World Health Organization, 2015).
Saito, H. Metabolism of iron stores. Nagoya J. Med. Sci. 76, 235–254 (2014).
Garberg, P., Ståhl, A., Warholm, M. & Högberg, J. Studies of the role of DNA fragmentation in selenium toxicity. Biochem. Pharmacol. 37, 3401–3406. https://doi.org/10.1016/0006-2952(88)90688-0 (1988).
Goff, J. P. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. J. Dairy Sci. 101, 2763–2813. https://doi.org/10.3168/jds.2017-13112 (2018).
Zielińska-Dawidziak, M. Plant ferritin—a source of iron to prevent its deficiency. Nutrients 7, 1184–1201. https://doi.org/10.3390/nu7021184 (2015).
Zhang, X. G. et al. Preparation of S-iron-enriched yeast using siderophores and its effect on iron deficiency anemia in rats. Food Chem. 365, 130508. https://doi.org/10.1016/j.foodchem.2021.130508 (2021).
Yuan, Y., Guo, X., He, X., Zhang, B. & Liu, S. Construction of a high-biomass, iron-enriched yeast strain and study on distribution of iron in the cells of Saccharomyces cerevisiae. Biotechnol. Lett. 26, 311–315. https://doi.org/10.1023/b:bile.0000015449.30186.90 (2004).
Kyyaly, M. A., Powell, C. & Ramadan, E. Preparation of iron-enriched baker’s yeast and its efficiency in recovery of rats from dietary iron deficiency. Nutrition 31, 1155–1164. https://doi.org/10.1016/j.nut.2015.04.017 (2015).
Zeng, Y. et al. Effect of high efficiency digestion and utilization of organic iron made by Saccharomyces cerevisiae on antioxidation and caecum microflora in weaned piglets. Anim. (Basel) 31, 498. https://doi.org/10.3390/ani13030498 (2023).
Philpott, C. C. & Protchenko, O. Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot. Cell. 7, 20–27. https://doi.org/10.1128/EC.00354-07 (2008).
Zhang, X. G., Peng, Y. N., Li, X. R., Ma, G. D. & Chen, X. Q. Screening of iron-enriched fungus from natural environment and evaluation of organically bound iron bioavailability in rats. Food Sci. Technol. Int. 35, 58–65. https://doi.org/10.1590/1678-457X.6454 (2015).
Li, L., Chen, O. S., McVey Ward, D. & Kaplan, J. CCC1 is a transporter that mediates vacuolar iron storage in yeast. J. Biol. Chem. 276, 29515–29519. https://doi.org/10.1074/jbc.M103944200 (2001).
Varga, E. & Maráz, A. Yeast cells as sources of essential microelements and vitamins B1 and B2. Acta Aliment. 31, 393–405. https://doi.org/10.1556/aalim.31.2002.4.8 (2002).
Raguzzi, F., Lesuisse, E. & Crichton, R. R. Iron storage in Saccharomyces cerevisiae. FEBS Lett. 231, 253–258. https://doi.org/10.1016/0014-5793(88)80742-7 (1988).
Georgatsou, E. & Alexandraki, D. Regulated expression of the Saccharomyces cerevisiae Fre1p/Fre2p Fe/Cu reductase related genes. Yeast 15, 573–584. https://doi.org/10.1002/(SICI)1097-0061(199905)15:7%3c573::AID-YEA404%3e3.0.CO;2-7 (1999).
<a data-track="click" rel="nofollow noopener" data-track-label="10.1002/(SICI)1097-0061(199905)15:73.0.CO;2-7″ data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291097-0061%28199905%2915%3A7%3C573%3A%3AAID-YEA404%3E3.0.CO%3B2-7″ aria-label=”Article reference 21″ data-doi=”10.1002/(SICI)1097-0061(199905)15:73.0.CO;2-7″>Article
CAS
PubMed
Google Scholar
Chang, T. P. & Rangan, C. Iron poisoning: A literature-based review of epidemiology, diagnosis, and management. Pediatr. Emerg. Care. 27, 978–985. https://doi.org/10.1097/PEC.0b013e3182302604 (2011).
United States Department of Agriculture. Nutrients: Iron , Fe (mg) [Internet]. https://www.nal.usda.gov/sites/www.nal.usda.gov/files/iron.pdf (2018).
Ramírez-Cota, G. Y., López-Villegas, E. O., Jiménez-Aparicio, A. R. & Hernández-Sánchez, H. Modeling the ethanol tolerance of the probiotic yeast Saccharomyces cerevisiae var. boulardii CNCM I-745 for its possible use in a functional beer. Probiot. Antimicrob. Proteins 13, 187–194. https://doi.org/10.1007/s12602-020-09680-5 (2021).
Graff, S., Chaumeil, J. C., Boy, P., Lai-Kuen, R. & Charrueau, C. Formulations for protecting the probiotic Saccharomyces boulardii from degradation in acidic condition. Biol. Pharm. Bull. 31, 266–272. https://doi.org/10.1248/bpb.31.266 (2008).
Hudson, L. E. et al. Characterization of the probiotic yeast Saccharomyces boulardii in the healthy mucosal immune system. PLoS One. 11, e0153351. https://doi.org/10.1371/journal.pone.0153351 (2016).
Kwak, S. et al. Dissection and enhancement of prebiotic properties of yeast cell wall oligosaccharides through metabolic engineering. Biomaterials 282, 121379. https://doi.org/10.1016/j.biomaterials.2022.121379 (2022).
Martínez-Garay, C. A., de Llanos, R., Romero, A. M., Martínez-Pastor, M. T. & Puig, S. Responses of Saccharomyces cerevisiae strains from different origins to elevated iron concentrations. Appl. Environ. Microbiol. 82, 1906–1916. https://doi.org/10.1128/AEM.03464-15 (2016).
Nowosad, K., Sujka, M., Pankiewicz, U., Miklavčič, D. & Arczewska, M. Pulsed electric field (Pef) enhances iron uptake by the yeast Saccharomyces cerevisiae. Biomolecules 11, 850. https://doi.org/10.3390/biom11060850 (2021).
Nowosad, K. & Sujka, M. The use of iron-enriched yeast for the production of flatbread. Molecules 26, 5204. https://doi.org/10.3390/molecules26175204 (2021).
Gaensly, F., Wille, G. M. F. C., Brand, D. & Bonfim, T. M. B. Iron enriched Saccharomyces cerevisiae maintains its fermenting power and bakery properties. Food Sci. Technol. 31, 980–983 (2011).
Kumari, M. & Gupta, S. K. Response surface methodological (RSM) approach for optimizing the removal of trihalomethanes (THMs) and its precursor’s by surfactant modified magnetic nanoadsorbents (sMNP)—an endeavor to diminish probable cancer risk. Sci. Rep. 9, 18339. https://doi.org/10.1038/s41598-019-54902-8 (2019).
Singh, K. P., Rai, P., Pandey, P. & Sinha, S. Modeling and optimization of trihalomethanes formation potential of surface water (a drinking water source) using Box-Behnken design. Environ. Sci. Pollut. Res. Int. 19, 113–127. https://doi.org/10.1007/s11356-011-0544-y (2012).
Malairuang, K., Krajang, M., Sukna, J., Rattanapradit, K. & Chamsart, S. High cell density cultivation of Saccharomyces cerevisiae with intensive multiple sequential batches together with a novel technique of fed-batch at cell level (FBC). Processes 8, 1–26. https://doi.org/10.3390/pr8101321 (2020).
Wang, R., Lorantfy, B., Fusco, S., Olsson, L. & Franzén, C. J. Analysis of methods for quantifying yeast cell concentration in complex lignocellulosic fermentation processes. Sci. Rep. 11, 11293. https://doi.org/10.1038/s41598-021-90703-8 (2021).
Olivares-Marin, I. K., González-Hernández, J. C., Regalado-Gonzalez, C. & Madrigal-Perez, L. A. Saccharomyces cerevisiae exponential growth kinetics in batch culture to analyze respiratory and fermentative metabolism. J. Vis. Exp. 30, 58192. https://doi.org/10.3791/58192 (2018).
Esmaeili, S., Khosravi-Darani, K., Pourahmad, R. & Komeili, R. An experimental design for production of selenium-enriched yeast. World Appl. Sci. J. 19, 31–37. https://doi.org/10.5829/idosi.wasj.2012.19.01.2634 (2012).
Tafazzoli, K., Ghavami, M. & Khosravi-Darani, K. Investigation of impact of siderophore and process variables on production of iron-enriched Saccharomyces boulardii by Plackett-Burman design (Scientific Repot, 2024).
Saleh, A. K., El-Gendi, H., Soliman, N. A., El-Zawawy, W. K. & Abdel-Fattah, Y. R. Bioprocess development for bacterial cellulose biosynthesis by novel Lactiplantibacillus plantarum isolate along with characterization and antimicrobial assessment of fabricated membrane. Sci. Rep. 12, 2181. https://doi.org/10.1038/s41598-022-06117-7 (2022).
El-Bendary, M. A., Afifi, S. S., Moharam, M. E., Elsoud, M. M. A. & Gawdat, N. A. Optimization of Bacillus subtilis NRC1 growth conditions using response surface methodology for sustainable biosynthesis of gold nanoparticles. Sci. Rep. 12, 20882. https://doi.org/10.1038/s41598-022-25324-w (2022).
Prakash-Maran, J., Manikandan, S., Thirugnanasambandham, K., Vigna-Nivetha, C. & Dinesh, R. Box-Behnken design based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide. Carbohydr. Polym. 92, 604–611. https://doi.org/10.1016/j.carbpol.2012.09.020 (2013).
Hazra, A. et al. Coenzyme and prosthetic group biosynthesis. Encycl. Microbiol 79–88, 2009. https://doi.org/10.1016/b978-012373944-5.00069-9 (2009).
Coote, N. & Kirsop, B. H. Factors responsible for the decrease in ph during beer fermentations. J. Inst. Brew. 82, 149–153. https://doi.org/10.1002/j.2050-0416.1976.tb03739.x (1976).
Elsayed, E. A. & Enshasy, H. E. Effects of different aeration rates and feeding strategies on cell growth and invertase production kinetics by Saccharomyces boulardii. JSIR 77, 575–582 (2018).
De La Fuente, G. & Sols, A. Transport of sugars in yeasts. II. Mechanisms of utilization of disaccharides and related glycosides. Biochim. Biophys. Acta 56, 49–62. https://doi.org/10.1016/0006-3002(62)90526-7 (1962).
Ohlenbusch, H. D. & Vogele, P. Methods of enzymatic analysis. Invertase 1974, 923–928. https://doi.org/10.1016/B978-0-12-091302-2.50081-5 (1974).
O’Dell, B. L. Fructose and mineral metabolism. Am. J. Clin. Nutr. 58, 771S-778S. https://doi.org/10.1093/ajcn/58.5.771S (1993).
Charley, P. J., Sarkar, B., Stitt, C. F. & Saltman, P. Chelation of iron by sugars. Biochim. Biophys. Acta 69, 313–321. https://doi.org/10.1016/0006-3002(63)91264-2 (1963).
Christides, T. Effects of carbohydrates on iron metabolism in intestinal and liver cells. University of Greenwich. https://gala.gre.ac.uk/id/eprint/23702/ (2016).
Baryga, A., Ziobro, R., Gumul, D., Rosicka-Kaczmarek, J. & Miskiewicz, K. Physicochemical properties and evaluation of antioxidant potential of sugar beet pulp—preliminary analysis for further use (future prospects). Agric. (Switz.) 13, 1–17. https://doi.org/10.3390/agriculture13051039 (2023).
Deseo, M. A., Elkins, A., Rochfort, S. & Kitchen, B. Antioxidant activity and polyphenol composition of sugarcane molasses extract. Food Chem. 314, 126180. https://doi.org/10.1016/j.foodchem.2020.126180 (2020).
Buerkli, S. et al. The effect of a natural polyphenol supplement on iron absorption in adults with hereditary hemochromatosis. Eur. J. Nutr. 61, 2967–2977. https://doi.org/10.1007/s00394-022-02829-8 (2022).
Brune, M., Rossander, L. & Hallberg, L. Iron absorption and phenolic compounds: Importance of different phenolic structures. Eur. J. Clin. Nutr. 43, 547–557 (1989).
Sousa, L., Oliveira, M. M., Pessôa, M. T. C. & Barbosa, L. A. Iron overload: Effects on cellular biochemistry. Clin. Chim. Acta 504, 180–189. https://doi.org/10.1016/j.cca.2019.11.029 (2020).
Stockwell, B. R. et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285. https://doi.org/10.1016/j.cell.2017.09.021 (2017).
Kwun, M. S. & Lee, D. G. Ferroptosis-like death in microorganisms: A novel programmed cell death following lipid peroxidation. J. Microbiol. Biotechnol. 33, 992–997. https://doi.org/10.4014/jmb.2307.07002 (2023).
The oxygen-transferring ferment of respiration. Nobel Lecture. https://www.nobelprize.org/uploads/2018/06/warburg-lecture.pdf (1931).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-55433-7