Search
Close this search box.

Production and characterization of human hair keratin bioplastic films with novel plasticizers – Scientific Reports

  • Rasmussen, S. C. From parkesine to celluloid: The birth of organic plastics. Angew. Chem. 133(15), 8090–8094 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Chalmin, P. The history of plastics: From the Capitol to the Tarpeian Rock. Field actions science reports. J. Field Actions 19, 6–11 (2019).


    Google Scholar
     

  • Sridharan, S. et al. The polymers and their additives in particulate plastics: What makes them hazardous to the fauna?. Sci. Total Environ. 34, 153828 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kan, M. & Miller, S. A. Environmental impacts of plastic packaging of food products. Resour. Conserv. Recycl. 180, 106156 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lambert, S., & Wagner, M. Microplastics are Contaminants of Emerging Concern in Freshwater Environments: An Overview. 1–23. (Springer, 2018).

  • Tekman, M. B., Walther, B., Peter, C., Gutow, L., & Bergmann, M. Impacts of Plastic Pollution in the Oceans on Marine Species, Biodiversity and Ecosystems. (WWW Germany, 2022).

  • Plackett, D., &Siró, I. Polyhydroxyalkanoates (PHAs) for food packaging. In Multifunctional and Nanoreinforced Polymers for Food Packaging. 498–526. (Woodhead Publishing, 2011).

  • Hann, S., Scholes, R., Lee, T., Ettlinger, S. & Jørgensen, H. Biobased and biodegradable plastics in Denmark. Ind. Biotechnol. 16(3), 164–175 (2020).

    Article 

    Google Scholar
     

  • Varghese, S. A., Pulikkalparambil, H., Rangappa, S. M., Siengchin, S. & Parameswaranpillai, J. Novel biodegradable polymer films based on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and Ceibapentandra natural fibers for packaging applications. Food Packag. Shelf Life 25, 100538 (2020).

    Article 

    Google Scholar
     

  • Chafran, L. S. et al. Preparation of PLA blends by polycondensation of D, l-lactic acid using supported 12-tungstophosphoric acid as a heterogeneous catalyst. Heliyon 5(5), 134 (2019).

    Article 

    Google Scholar
     

  • Khalil, H. A. et al. Seaweed based sustainable films and composites for food and pharmaceutical applications: A review. Renew. Sustain. Energy Rev. 77, 353–362 (2017).

    Article 

    Google Scholar
     

  • Zhang, Y., Rempel, C. & Liu, Q. Thermoplastic starch processing and characteristics—A review. Crit. Rev. Food Sci. Nutr. 54(10), 1353–1370 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vilarinho, F., Sanches Silva, A., Vaz, M. F. & Farinha, J. P. Nanocellulose in green food packaging. Crit. Rev. Food Sci. Nutr. 58(9), 1526–1537 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khedri, S. et al. Bioactive edible films: Development and characterization of gelatin edible films incorporated with casein phosphopeptides. LWT 138, 110649 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Arif, A. et al. Bioplastics from waste biomass of marine and poultry industries. J. Biosci. 48(2), 11 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Oechsle, A. M., Bugbee, T. J., Gibis, M., Kohlus, R. & Weiss, J. Modification of extruded chicken collagen films by addition of co-gelling protein and sodium chloride. J. Food Eng. 207, 46–55 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jagannath, J. H., Radhika, M., Nanjappa, C., Murali, H. S. & Bawa, A. S. Antimicrobial, mechanical, barrier, and thermal properties of starch-casein based, neem (Meliaazardirachta) extract containing film. J. Appl. Polymer Sci. 101(6), 3948–3954 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Chambi, H. & Grosso, C. Edible films produced with gelatin and casein cross-linked with transglutaminase. Food Res. Int. 39(4), 458–466 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Seydim, A. C. & Sarikus, G. Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res. Int. 39(5), 639–644 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Florentino, G. I. B. et al. Characterization of a new food packaging material based on fish by-product proteins and passion fruit pectin. Food Packag. Shelf Life 33, 100920 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ramakrishnan, N., Sharma, S., Gupta, A. & Alashwal, B. Y. Keratin based bioplastic film from chicken feathers and its characterization. Int. J. Biol. Macromol. 111, 352–358 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barone, J. R., Schmidt, W. F. & Gregoire, N. T. Extrusion of feather keratin. J. Appl. Polymer Sci. 100(2), 1432–1442 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Liu, S., Huang, K., Yu, H. & Wu, F. Bioplastic based on 1, 8-octanediol-plasticized feather keratin: A material for food packaging and biomedical applications. J. Appl. Polymer Sci. 135(30), 46516 (2018).

    Article 

    Google Scholar
     

  • Yamauchi, K., Yamauchi, A., Kusunoki, T., Kohda, A. & Konishi, Y. Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films. J. Biomed. Mater. Res. 31(4), 439–444 (1996).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/(SICI)1097-4636(199608)31:43.0.CO;2-M” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291097-4636%28199608%2931%3A4%3C439%3A%3AAID-JBM1%3E3.0.CO%3B2-M” aria-label=”Article reference 24″ data-doi=”10.1002/(SICI)1097-4636(199608)31:43.0.CO;2-M”>Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strnad, P. et al. Unique amino acid signatures that are evolutionarily conserved distinguish simple-type, epidermal and hair keratins. J. Cell Sci. 124(24), 4221–4232 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robbins, C. R. & Robbins, C. R. Chemical and Physical Behavior of Human Hair Vol. 4 (Springer, 2012).

    Book 

    Google Scholar
     

  • Agarwal, V., Panicker, A. G., Indrakumar, S. & Chatterjee, K. Comparative study of keratin extraction from human hair. Int. J. Biol. Macromol. 133, 382–390 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Guzman, R. C. et al. Mechanical and biological properties of keratose biomaterials. Biomaterials 32(32), 8205–8217 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Edwards, A., Jarvis, D., Hopkins, T., Pixley, S. & Bhattarai, N. Poly (ε-caprolactone)/keratin-based composite nanofibers for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 103(1), 21–30 (2015).

    Article 

    Google Scholar
     

  • Havryliak, V. V., Mykhaliuk, V. V. & Kochubei, V. V. Characteristics of regenerated keratin and keratin-based film. Biopolymers Cell 37, 5 (2021).

    Article 

    Google Scholar
     

  • Tan, B. Y., Nguyen, L. T. & Ng, K. W. Development of a mechanically stable human hair keratin film for cell culture. Mater. Today Commun. 30, 103049 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tinoco, A. et al. Ohmic heating as an innovative approach for the production of keratin films. Int. J. Biol. Macromol. 150, 671–680 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, A., Arimoto, M., Takeuchi, K. & Fujii, T. A rapid extraction procedure of human hair proteins and identification of phosphorylated species. Biol. Pharmaceut. Bull. 25(5), 569–572 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1–2), 248–254 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coates, J. Interpretation of Infrared Spectra, a Practical Approach (2000).

  • Cardamone, J. M. Investigating the microstructure of keratin extracted from wool: Peptide sequence (MALDI-TOF/TOF) and protein conformation (FTIR). J. Mol. Struct. 969(1–3), 97–105 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Krimm, S. & Bandekar, J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Protein Chem. 38, 181–364 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, K. et al. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations. Food Chem. 216, 209–216 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yayli, D., Turhan, S. & Saricaoglu, F. T. Edible packaging film derived from mechanically deboned chicken meat proteins: Effect of transglutaminase on physicochemical properties. Korean J. Food Sci. Anim. Resour. 37, 635–645 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaewprachu, P., Osako, K., Tongdeesoontorn, W. & Rawdkuen, S. The effects of microbial transglutaminase on the properties of fish myofibrillar protein film. Food Packag. Shelf Life 12, 91–99 (2017).

    Article 

    Google Scholar
     

  • Araújo, C. S., Rodrigues, A. M. C., PeixotoJoele, M. R. S., Araújo, E. A. F. & Lourenço, L. F. H. Optimizing process parameters to obtain a bioplastic using proteins from fish byproducts through the response surface methodology. Food Packag. Shelf Life 16, 23–30 (2018).

    Article 

    Google Scholar
     

  • Cruz-Diaz, K., Cobos, Á., Fernández-Valle, M. E., Díaz, O. & Cambero, M. I. Characterization of edible films from whey proteins treated with heat, ultrasounds and/or transglutaminase. Application in cheese slices packaging. Food Packag. Shelf Life 22, 100397 (2019).

    Article 

    Google Scholar
     

  • Çakmak, H., Özselek, Y., Turan, O. Y., Firatligil, E. & Güler, F. K. Whey protein isolate edible films incorporated with essential oils: Antimicrobial activity and barrier properties. Polymer Degrad. Stabil. 34, 109285 (2020).

    Article 

    Google Scholar
     

  • Zhang, Y., Liu, Q. & Rempel, C. Processing and characteristics of canola protein-based biodegradable packaging: A review. Crit. Rev. Food Sci. Nutr. 58(3), 475–485 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Montes-de-Oca-Ávalos, J. M. et al. Physical and structural properties of whey protein concentrate-corn oil-TiO2 nanocomposite films for edible food-packaging. Food Packag. Shelf Life 26, 100590 (2020).

    Article 

    Google Scholar
     

  • Babaei-Ghazvini, A. & Acharya, B. Humidity-responsive photonic films and coatings based on tuned cellulose nanocrystals/glycerol/polyethylene glycol. Polymers 13(21), 3695 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thammahiwes, S., Riyajan, S. A. & Kaewtatip, K. Effect of shrimp shell waste on the properties of wheat gluten based-bioplastics. J. Polymers Environ. 26, 1775–1781 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gamero, S., Jiménez-Rosado, M., Romero, A., Bengoechea, C. & Guerrero, A. Reinforcement of soy protein-based bioplastics through addition of lignocellulose and injection molding processing conditions. J. Polymers Environ. 27, 1285–1293 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Álvarez-Castillo, E., Felix, M., Bengoechea, C. & Guerrero, A. Proteins from agri-food industrial biowastes or co-products and their applications as green materials. Foods 10(5), 981 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alashwal, B. Y., Bala, M. S., Gupta, A., Sharma, S. & Mishra, P. Improved properties of keratin-based bioplastic film blended with microcrystalline cellulose: A comparative analysis. J. King Saud Univ.-Sci. 32(1), 853–857 (2020).

    Article 

    Google Scholar
     

  • Valkov, A., Zinigrad, M., Sobolev, A. & Nisnevitch, M. Keratin biomembranes as a model for studying onychomycosis. Int. J. Mol. Sci. 21(10), 3512 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, B., Cao, Y. P., Feng, X. Q. & Gao, H. Mechanics of morphological instabilities and surface wrinkling in soft materials: A review. Soft Matter 8(21), 5728–5745 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mohamed, J. M. M. et al. Human hair keratin composite scaffold: Characterisation and biocompatibility study on NIH 3T3 fibroblast cells. Pharmaceuticals 14(8), 781 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farag, A. M. & Hassan, M. A. Purification, characterization and immobilization of a keratinase from Aspergillusoryzae. Enzyme Microb. Technol. 34(2), 85–93 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Benedek, T. Fragmentamycologica. I. Some historical remarks on the development of “hairbaiting” of Toma-Karling-Yanbreuseghem (the ToKaYa method). Mycopathologia 16(1), 4 (1962).


    Google Scholar