PRMT5-regulated splicing of DNA repair genes drives chemoresistance in breast cancer stem cells

  • Gillespie MS, Ward CM, Davies CC. DNA Repair and Therapeutic Strategies in Cancer Stem Cells. Cancers. 2023;15:1897.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu M-F, et al. Intrinsic Resistance of Tumorigenic Breast Cancer Cells to Chemotherapy. Jnci J Natl Cancer Inst. 2008;100:672–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rezayatmand H, Razmkhah M, Razeghian-Jahromi I. Drug resistance in cancer therapy: the Pandora’s Box of cancer stem cells. Stem Cell Res Ther. 2022;13:181.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bellio C, DiGloria C, Foster R, James K, Konstantinopoulos PA, Growdon WB, et al. PARP inhibition induces enrichment of DNA repair proficient CD133 and CD117 positive ovarian cancer stem cells. Mol Cancer Res. 2018;17:molcanres.0594.2018.


    Google Scholar
     

  • Lim YC, Roberts TL, Day BW, Harding A, Kozlov S, Kijas AW, et al. A role for homologous recombination and abnormal cell-cycle progression in radioresistance of glioma-initiating cells. Mol Cancer Therapeutics. 2012;11:1863–72.

    Article 
    CAS 

    Google Scholar
     

  • Abad E, Civit L, Potesil D, Zdrahal Z, Lyakhovich A. Enhanced DNA damage response through RAD50 in triple negative breast cancer resistant and cancer stem‐like cells contributes to chemoresistance. FEBS J. 2021;288:2184–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Azzoni V, Wicinski J, Macario M, Castagné M, Finetti P, Ambrosova K, et al. BMI1 nuclear location is critical for RAD51-dependent response to replication stress and drives chemoresistance in breast cancer stem cells. Cell Death Dis. 2022;13:96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen H, Lorton B, Gupta V, Shechter D. A TGFβ-PRMT5-MEP50 axis regulates cancer cell invasion through histone H3 and H4 arginine methylation coupled transcriptional activation and repression. Oncogene. 2016;36:373–86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Powers MA, Fay MM, Factor RE, Welm AL, Ullman KS. Protein arginine methyltransferase 5 accelerates tumor growth by arginine methylation of the tumor suppressor programmed cell death 4. Cancer Res. 2011;71:5579–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang F, Wang J, Ren H-Y, Jin J, Wang A-L, Sun L-L, et al. Proliferative role of TRAF4 in breast cancer by upregulating PRMT5 nuclear expression. Tumour Biol J Int Soc Oncodev Biol Med. 2015;36:5901–11.

    Article 
    CAS 

    Google Scholar
     

  • Xu Y, Li X, Zhang S, Tang M, Yu R, Liao X, et al. CircMMP2(6,7) Cooperates with β-Catenin and PRMT5 to Disrupt Bone Homeostasis and Promote Breast Cancer Bone Metastasis. Cancer Res. 2023;84:328–43.

    Article 

    Google Scholar
     

  • Zhang J, Fan X, Zhou Y, Chen L, Rao H. The PRMT5-LSD1 axis confers Slug dual transcriptional activities and promotes breast cancer progression. J Exp Clin Cancer Res. 2022;41:191.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Y, Wang Z, Zhang J, Ling R. Elevated expression of protein arginine methyltransferase 5 predicts the poor prognosis of breast cancer. Tumour Biol J Int Soc Oncodev Biol Med. 2017;39:1010428317695917.

    Article 

    Google Scholar
     

  • Liang Z, Liu L, Wen C, Jiang H, Ye T, Ma S, et al. Clinicopathological and Prognostic Significance of PRMT5 in Cancers: A System Review and Meta-Analysis. Cancer Control. 2021;28:10732748211050584.

    Article 

    Google Scholar
     

  • Chiang K, Zielinska AE, Shaaban AM, Sanchez-Bailon MP, Jarrold J, Clarke TL, et al. PRMT5 Is a Critical Regulator of Breast Cancer Stem Cell Function via Histone Methylation and FOXP1 Expression. Cell Rep. 2017;21:3498–513.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brehmer D, Beke L, Wu T, Millar HJ, Moy C, Sun W, et al. Discovery and Pharmacological Characterization of JNJ-64619178, a Novel Small Molecule Inhibitor of PRMT5 with Potent Anti-Tumor Activity. Mol Cancer Ther. 2022;20:2317–8.

  • Bonday ZQ, Cortez GS, Grogan MJ, Antonysamy S, Weichert K, Bocchinfuso WP, et al. LLY-283, a Potent and Selective Inhibitor of Arginine Methyltransferase 5, PRMT5, with Antitumor Activity. ACS Med Chem Lett. 2018;9:612–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fong JY, Pignata L, Goy P-A, Kawabata KC, Lee SC-W, Koh CM, et al. Therapeutic Targeting of RNA Splicing Catalysis through Inhibition of Protein Arginine Methylation. Cancer Cell. 2019;36:194–209.e9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Q, Schapira M, Arrowsmith CH, Barsyte-Lovejoy D. Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat Rev Drug Discov. 2021;20:509–30.

  • Jarrold J, Davies CC. PRMTs and Arginine Methylation: Cancer’s Best-Kept Secret? Trends Mol Med. 2019;25:993–1009.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Owens JL, Beketova E, Liu S, Tinsley SL, Asberry AM, Deng X, et al. PRMT5 Cooperates with pICln to Function as a Master Epigenetic Activator of DNA Double-Strand Break Repair Genes. Iscience. 2020;23:100750.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo Z, Zheng L, Xu H, Dai H, Zhou M, Pascua MR, et al. Methylation of FEN1 suppresses nearby phosphorylation and facilitates PCNA binding. Nat Chem Biol. 2010;6:766–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He W, Ma X, Yang X, Zhao Y, Qiu J, Hang H. A role for the arginine methylation of Rad9 in checkpoint control and cellular sensitivity to DNA damage. Nucleic acids Res. 2011;39:4719–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke TL, Sanchez-Bailon MP, Chiang K, Reynolds JJ, Herrero-Ruiz J, Bandeiras TM, et al. PRMT5-Dependent Methylation of the TIP60 Coactivator RUVBL1 Is a Key Regulator of Homologous Recombination. Mol Cell. 2017. https://doi.org/10.1016/j.molcel.2017.01.019.

  • Rehman I, Basu SM, Das SK, Bhattacharjee S, Ghosh A, Pommier Y, et al. PRMT5-mediated arginine methylation of TDP1 for the repair of topoisomerase I covalent complexes. Nucleic Acids Res. 2018;46:5601–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carter J, Hulse M, Sivakumar M, Burtell J, Thodima V, Wang M, et al. PRMT5 Inhibitors Regulate DNA Damage Repair Pathways in Cancer Cells and Improve Response to PARP Inhibition and Chemotherapies. Cancer Res Commun. 2023;3:2233–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du C, Li SW, Singh SX, Roso K, Sun MA, Pirozzi CJ, et al. Epigenetic regulation of Fanconi anemia genes implicates PRMT5 blockage as a strategy for tumor chemosensitization. Mol Cancer Res. 2021;19:molcanres.MCR-21-0093-A.2021.


    Google Scholar
     

  • Chang C-H, Zhang M, Rajapakshe K, Coarfa C, Edwards D, Huang S, et al. Mammary Stem Cells and Tumor-Initiating Cells Are More Resistant to Apoptosis and Exhibit Increased DNA Repair Activity in Response to DNA Damage. Stem Cell Rep. 2015;5:378–91.

    Article 
    CAS 

    Google Scholar
     

  • Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005;65:5506–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR, et al. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res. 2010;70:709–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Z, Feng Z, Hu D, Yang P, Gur M, Bahar I, et al. A novel small-molecule antagonizes PRMT5-mediated KLF4 methylation for targeted therapy. Ebiomedicine. 2019;44:98–111.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan-Penebre E, Kuplast KG, Majer CR, Boriack-Sjodin PA, Wigle TJ, Johnston LD, et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol. 2015;11:432–7.

  • Duncan KW, Rioux N, Boriack-Sjodin PA, Munchhof MJ, Reiter LA, Majer CR, et al. Structure and Property Guided Design in the Identification of PRMT5 Tool Compound EPZ015666. ACS Med Chem Lett. 2016;7:162–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meister G, Fischer U. Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs. EMBO J. 2002;21:5853–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bezzi M, Teo SX, Muller J, Mok WC, Sahu SK, Vardy LA, et al. Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev. 2013;27:1903–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamard P-J, Santiago GE, Liu F, Karl DL, Martinez C, Man N, et al. PRMT5 Regulates DNA Repair by Controlling the Alternative Splicing of Histone-Modifying Enzymes. Cell Rep. 2018;24:2643–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sachamitr P, Ho JC, Ciamponi FE, Ba-Alawi W, Coutinho FJ, Guilhamon P, et al. PRMT5 inhibition disrupts splicing and stemness in glioblastoma. Nat Commun. 2021;12:979.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen S, Park JW, Lu Z, Lin L, Henry MD, Wu YN, et al. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci. 2014;111:E5593–E5601.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maron MI, Casill AD, Gupta V, Roth JS, Sidoli S, Query CC, et al. Type I and II PRMTs inversely regulate post-transcriptional intron detention through Sm and CHTOP methylation. Elife. 2022;11:e72867.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radzisheuskaya A, Shliaha PV, Grinev V, Lorenzini E, Kovalchuk S, Shlyueva D, et al. PRMT5 methylome profiling uncovers a direct link to splicing regulation in acute myeloid leukemia. Nat Struct Mol Biol. 2019;26:999–1012.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scaglione A, Patzig J, Liang J, Frawley R, Bok J, Mela A, et al. PRMT5-mediated regulation of developmental myelination. Nat Commun. 2018;9:2840.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng Y, Chen Z, Zhou B, Chen S, Han L, Chen N, et al. PRMT5 Deficiency Enforces the Transcriptional and Epigenetic Programs of Klrg1+CD8+ Terminal Effector T Cells and Promotes Cancer Development. J Immunol. 2021;208:ji2100523.


    Google Scholar
     

  • Li S, Ali S, Duan X, Liu S, Du J, Liu C, et al. JMJD1B Demethylates H4R3me2s and H3K9me2 to Facilitate Gene Expression for Development of Hematopoietic Stem and Progenitor Cells. Cell Rep. 2018;23:389–403.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghigna C, Giordano S, Shen H, Benvenuto F, Castiglioni F, Comoglio PM, et al. Cell Motility Is Controlled by SF2/ASF through Alternative Splicing of the Ron Protooncogene. Mol Cell. 2005;20:881–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song X, Wang X, Chen X, Yu Z, Zhou Y. SRSF1 inhibits ferroptosis and reduces cisplatin chemosensitivity of triple-negative breast cancer cells through the circSEPT9/GCH1 axis. J Proteom. 2024;292:105055.

    Article 
    CAS 

    Google Scholar
     

  • Anczuków O, Rosenberg AZ, Akerman M, Das S, Zhan L, Karni R, et al. The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat Struct Mol Biol. 2012;19:220–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braun CJ, Stanciu M, Boutz PL, Patterson JC, Calligaris D, Higuchi F, et al. Coordinated Splicing of Regulatory Detained Introns within Oncogenic Transcripts Creates an Exploitable Vulnerability in Malignant Glioma. Cancer Cell. 2017;32:411–426.e11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trcek T, Sato H, Singer RH, Maquat LE. Temporal and spatial characterization of nonsense-mediated mRNA decay. Genes Dev. 2013;27:541–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boutz PL, Bhutkar A, Sharp PA. Detained introns are a novel, widespread class of post-transcriptionally spliced introns. Genes Dev. 2015;29:63–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Y, Dobrolecki LE, Sallas C, Zhang X, Kerr TD, Bisht D, et al. PRMT blockade induces defective DNA replication stress response and synergizes with PARP inhibition. Cell Rep. Med. 2023;4:101326.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crews LA, Balaian L, Delos Santos NP, Leu HS, Court AC, Lazzari E, et al. RNA Splicing Modulation Selectively Impairs Leukemia Stem Cell Maintenance in Secondary Human AML. Cell Stem Cell. 2016;19:599–612.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read A, Natrajan R. Splicing dysregulation as a driver of breast cancer. Endocr Relat Cancer. 2018;25:R467–R478.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du J-X, Luo Y-H, Zhang S-J, Wang B, Chen C, Zhu G-Q, et al. Splicing factor SRSF1 promotes breast cancer progression via oncogenic splice switching of PTPMT1. J Exp Clin Canc Res. 2021;40:171.

    Article 
    CAS 

    Google Scholar
     

  • Mavrakis KJ, McDonald ER, Schlabach MR, Billy E, Hoffman GR, deWeck A, et al. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science. 2016;351:1208–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kryukov GV, Wilson FH, Ruth JR, Paulk J, Tsherniak A, Marlow SE, et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science. 2016;351:1214–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marjon K, Cameron MJ, Quang P, Clasquin MF, Mandley E, Kunii K, et al. MTAP Deletions in Cancer Create Vulnerability to Targeting of the MAT2A/PRMT5/RIOK1 Axis. Cell Rep. 2016;15:574–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Engstrom LD, Aranda R, Waters L, Moya K, Bowcut V, Vegar L, et al. MRTX1719 is an MTA-cooperative PRMT5 inhibitor that exhibits synthetic lethality in preclinical models and patients with MTAP deleted cancer. Cancer Discov. 2023;13:2412–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Oliveira SFV, Ganzinelli M, Chilà R, Serino L, Maciel ME, de Andrade Urban C, et al. Characterization of MTAP Gene Expression in Breast Cancer Patients and Cell Lines. PloS One. 2016;11:e0145647.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer F, Engel AM, Krause AK, Wagner T, Poole L, Dubrovska A, et al. Efficient DNA Repair Mitigates Replication Stress Resulting in Less Immunogenic Cytosolic DNA in Radioresistant Breast Cancer Stem Cells. Front Immunol. 2022;13:765284.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomida J, Itaya A, Shigechi T, Unno J, Uchida E, Ikura M, et al. A novel interplay between the Fanconi anemia core complex and ATR-ATRIP kinase during DNA cross-link repair. Nucleic Acids Res. 2013;41:6930–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chun J, Buechelmaier ES, Powell SN. Rad51 Paralog Complexes BCDX2 and CX3 Act at Different Stages in the BRCA1-BRCA2-Dependent Homologous Recombination Pathway. Mol Cell Biol. 2013;33:387–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcin EB, Gon S, Sullivan MR, Brunette GJ, Cian AD, Concordet J-P, et al. Differential Requirements for the RAD51 Paralogs in Genome Repair and Maintenance in Human Cells. PLoS Genet. 2019;15:e1008355.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baldock RA, Pressimone CA, Baird JM, Khodakov A, Luong TT, Grundy MK, et al. RAD51D splice variants and cancer-associated mutations reveal XRCC2 interaction to be critical for homologous recombination. DNA Repair. 2019;76:99–107.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turdo A, Gaggianesi M, Franco SD, Veschi V, D’Accardo C, Porcelli G, et al. Effective targeting of breast cancer stem cells by combined inhibition of Sam68 and Rad51. Oncogene. 2022;41:2196–209.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar