Prevention of bone dehiscence associated with orthodontic tooth movement by prophylactic injection of bone anabolic agents in mice – Scientific Reports

  • Freitas, R. M. et al. Alveolar ridge and maxillary sinus augmentation using rhBMP-2: A systematic review. Clin. Implant Dent. Relat. Res. 17(Suppl 1), e192–e201. https://doi.org/10.1111/cid.12156 (2015).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Fuhrmann, R. A. W. Three-dimensional evaluation of periodontal remodeling during orthodontic treatment. Semin. Orthod. 8, 23–28. https://doi.org/10.1053/sodo.2002.28168 (2002).

    Article 

    Google Scholar
     

  • Garib, D. G., Yatabe, M. S., Ozawa, T. O. & Silva Filho, O. G. D. S. Alveolar bone morphology under the perspective of the computed tomography: Defining the biological limits of tooth movement. Dental Press J. Orthod. 15, 192–205. https://doi.org/10.1590/S2176-94512010000500023 (2010).

    Article 

    Google Scholar
     

  • Lee, K. H., Cheon Lee, S., Jung Kim, H., Kang, Y. G. & Kim, S. J. Effect of locally delivered protein complex-loaded nanoparticles on bone remodelling of atrophic alveolar ridge in beagles. Orthod. Craniofac. Res. 25, 55–63. https://doi.org/10.1111/ocr.12487 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Löst, C. Depth of alveolar bone dehiscences in relation to gingival recessions. J. Clin. Periodontol. 11, 583–589. https://doi.org/10.1111/j.1600-051x.1984.tb00911.x (1984).

    Article 
    PubMed 

    Google Scholar
     

  • Buyuk, S. K., Ercan, E., Celikoglu, M., Sekerci, A. E. & Hatipoglu, M. Evaluation of dehiscence and fenestration in adolescent patients affected by unilateral cleft lip and palate: A retrospective cone beam computed tomography study. Angle Orthod. 86, 431–436. https://doi.org/10.2319/042715-289.1 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Artun, J. & Urbye, K. S. The effect of orthodontic treatment on periodontal bone support in patients with advanced loss of marginal periodontium. Am. J. Orthod. Dentofac. Orthop. 93, 143–148. https://doi.org/10.1016/0889-5406(88)90292-2 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Wennström, J. L., Stokland, B. L., Nyman, S. & Thilander, B. Periodontal tissue response to orthodontic movement of teeth with infrabony pockets. Am. J. Orthod. Dentofac. Orthop. 103, 313–319. https://doi.org/10.1016/0889-5406(93)70011-C (1993).

    Article 

    Google Scholar
     

  • Garib, D. G., Henriques, J. F., Janson, G., de Freitas, M. R. & Fernandes, A. Y. Periodontal effects of rapid maxillary expansion with tooth-tissue-borne and tooth-borne expanders: A computed tomography evaluation. Am. J. Orthod. Dentofac. Orthop. 129, 749–758. https://doi.org/10.1016/j.ajodo.2006.02.021 (2006).

    Article 

    Google Scholar
     

  • Baysal, A. et al. Evaluation of alveolar bone loss following rapid maxillary expansion using cone-beam computed tomography. Korean J. Orthod. 43, 83–95. https://doi.org/10.4041/kjod.2013.43.2.83 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taner, T. U., Germec, D., Er, N. & Tulunoglu, I. Interdisciplinary treatment of an adult patient with old extraction sites. Angle Orthod. 76, 1066–1073. https://doi.org/10.2319/082505-301 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Tan, W. L., Wong, T. L., Wong, M. C. & Lang, N. P. Systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans. Clin. Oral Implants Res. 23(Suppl 5), 1–21. https://doi.org/10.1111/j.1600-0501.2011.02375.x (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Ramos, A. L., Dos Santos, M. C., de Almeida, M. R. & Mir, C. F. Bone dehiscence formation during orthodontic tooth movement through atrophic alveolar ridges. Angle Orthod. 90, 321–329. https://doi.org/10.2319/063019-443.1 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kessler, M. Interrelationships between orthodontics and periodontics. Am. J. Orthod. 70, 154–172. https://doi.org/10.1016/s0002-9416(76)90316-x (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santos, P. B. D. D. et al. Movement of mandibular molar into edentulous alveolar ridge: A cone-beam computed tomography study. Am. J. Orthod. Dentofac. Orthop. 151, 907–913. https://doi.org/10.1016/j.ajodo.2016.10.024 (2017).

    Article 

    Google Scholar
     

  • Sarikaya, S., Haydar, B., Ciğer, S. & Ariyürek, M. Changes in alveolar bone thickness due to retraction of anterior teeth. Am. J. Orthod. Dentofac. Orthop. 122, 15–26. https://doi.org/10.1067/mod.2002.119804 (2002).

    Article 

    Google Scholar
     

  • Wainwright, W. M. Faciolingual tooth movement its influence on the root and cortical plate. Am. J. Orthod. 64, 278–302. https://doi.org/10.1016/0002-9416(73)90021-3 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, H. et al. Augmented corticotomy-assisted presurgical orthodontic treatment to prevent alveolar bone loss in patients with skeletal Class III malocclusion. Am. J. Orthod. Dentofac. Orthop. 163, 210–221. https://doi.org/10.1016/j.ajodo.2021.10.021 (2023).

    Article 

    Google Scholar
     

  • Araújo, M. G., Carmagnola, D., Berglundh, T., Thilander, B. & Lindhe, J. Orthodontic movement in bone defects augmented with Bio-Oss: An experimental study in dogs. J. Clin. Periodontol. 28, 73–80. https://doi.org/10.1034/j.1600-051x.2001.280111.x (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Wilcko, M. T., Wilcko, W. M., Pulver, J. J., Bissada, N. F. & Bouquot, J. E. Accelerated osteogenic orthodontics technique: A 1-stage surgically facilitated rapid orthodontic technique with alveolar augmentation. J. Oral Maxillofac. Surg. 67, 2149–2159. https://doi.org/10.1016/j.joms.2009.04.095 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, D. et al. Orthodontic tooth movement in alveolar cleft repaired with a tissue engineering bone: An experimental study in dogs. Tissue Eng. Part A 17, 1313–1325. https://doi.org/10.1089/ten.TEA.2010.0490 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arrington, E. D., Smith, W. J., Chambers, H. G., Bucknell, A. L. & Davino, N. A. Complications of iliac crest bone graft harvesting. Clin. Orthop. Relat. Res. 329, 300–309. https://doi.org/10.1097/00003086-199608000-00037 (1996).

    Article 

    Google Scholar
     

  • Yamada, Y. et al. Injectable bone tissue engineering using expanded mesenchymal stem cells. Stem Cells 31, 572–580. https://doi.org/10.1002/stem.1300 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ru, N. et al. BoneCeramic graft regenerates alveolar defects but slows orthodontic tooth movement with less root resorption. Am. J. Orthod. Dentofac. Orthop. 149, 523–532. https://doi.org/10.1016/j.ajodo.2015.09.027 (2016).

    Article 

    Google Scholar
     

  • Kuroda, Y., Kawai, T., Goto, K. & Matsuda, S. Clinical application of injectable growth factor for bone regeneration: A systematic review. Inflamm. Regen. 39, 20. https://doi.org/10.1186/s41232-019-0109-x (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Notodihardjo, F. Z., Kakudo, N., Kushida, S., Suzuki, K. & Kusumoto, K. Bone regeneration with BMP-2 and hydroxyapatite in critical-size calvarial defects in rats. J. Craniomaxillofac. Surg. 40, 287–291. https://doi.org/10.1016/j.jcms.2011.04.008 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Başçıl, S., Turhan İyidir, Ö., Bayraktar, N., Ertörer, M. E. & Başçıl Tütüncü, N. Severe chronic periodontitis is not common in Acromegaly: Potential protective role of gingival BMP-2. Turk. J. Med. Sci. 51, 1172–1178. https://doi.org/10.3906/sag-2006-93 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arai, Y. et al. Peptide-induced de novo bone formation after tooth extraction prevents alveolar bone loss in a murine tooth extraction model. Eur. J. Pharmacol. 782, 89–97. https://doi.org/10.1016/j.ejphar.2016.04.049 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sugamori, Y. et al. Peptide drugs accelerate BMP-2-induced calvarial bone regeneration and stimulate osteoblast differentiation through mTORC1 signaling. BioEssays 38, 717–725. https://doi.org/10.1002/bies.201600104 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rashed, F. et al. The effects of receptor activator of NF-κB ligand-binding peptides on bone resorption and bone formation. Front. Cell Dev. Biol. 9, 648084. https://doi.org/10.3389/fcell.2021.648084 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uehara, T. et al. Delivery of RANKL-binding peptide OP3-4 promotes BMP-2-induced maxillary bone regeneration. J. Dent. Res. 95, 665–672. https://doi.org/10.1177/0022034516633170 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keo, P. et al. A pilot study to investigate the histomorphometric changes of murine maxillary bone around the site of mini-screw insertion in regenerated bone induced by anabolic reagents. Eur. J. Orthod. 43, 86–93. https://doi.org/10.1093/ejo/cjaa018 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zeitounlouian, T. S., Zeno, K. G., Brad, B. A. & Haddad, R. A. Three-dimensional evaluation of the effects of injectable platelet rich fibrin (i-PRF) on alveolar bone and root length during orthodontic treatment: A randomized split mouth trial. BMC Oral Health 21, 92. https://doi.org/10.1186/s12903-021-01456-9 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evangelista, K. et al. Dehiscence and fenestration in patients with Class I and Class II Division 1 malocclusion assessed with cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 138, 133.e1–7. https://doi.org/10.1016/j.ajodo.2010.02.021 (2010) (discussion 133).

    Article 

    Google Scholar
     

  • Little, R. M. Stability and relapse of mandibular anterior alignment: University of Washington studies. Semin. Orthod. 5, 191–204. https://doi.org/10.1016/s1073-8746(99)80010-3 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Enhos, S. et al. Dehiscence and fenestration in patients with different vertical growth patterns assessed with cone-beam computed tomography. Angle Orthod. 82, 868–874. https://doi.org/10.2319/111211-702.1 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reichert, C., Götz, W., Smeets, R., Wenghöfer, M. & Jäger, A. The impact of nonautogenous bone graft on orthodontic treatment. Quintessence Int. 41, 665–672 (2010).

    PubMed 

    Google Scholar
     

  • Ritwiroon, N., Suzuki, B. & Suzuki, E. Y. Effects of alveolar bone width and density on the rate of orthodontic tooth movement. J. Dent. Assoc. Thai. 71, 53–63 (2021).


    Google Scholar
     

  • Huang, H., Williams, R. C. & Kyrkanides, S. Accelerated orthodontic tooth movement: Molecular mechanisms. Am. J. Orthod. Dentofac. Orthop. 146, 620–632. https://doi.org/10.1016/j.ajodo.2014.07.007 (2014).

    Article 

    Google Scholar
     

  • Alaa, S., Fouda, A. M., Grawish, M. E. & Abdelnaby, Y. L. The effect of submucosal injection of platelet-rich fibrin vs. platelet-rich plasma on orthodontic tooth movement in rabbits; 28 days follow-up. Int. Orthod. 21, 100715. https://doi.org/10.1016/j.ortho.2022.100715 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Alomari, E. B. & Sultan, K. Efficacy of injectable platelet-rich plasma in reducing alveolar bone resorption following rapid maxillary expansion: A cone-beam computed tomography assessment in a randomized split-mouth controlled trial. Angle Orthod. 89, 705–712. https://doi.org/10.2319/091018-661.1 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawamoto, T. Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch. Histol. Cytol. 66, 123–143. https://doi.org/10.1679/aohc.66.123 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Dempster, D. W. et al. Standardized nomenclature, symbols, and units for bone histomorphometry: A 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 28, 2–17. https://doi.org/10.1002/jbmr.1805 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Takagi, M. et al. High-turnover periprosthetic bone remodeling and immature bone formation around loose cemented total hip joints. J. Bone Miner. Res. 16, 79–88. https://doi.org/10.1359/jbmr.2001.16.1.79 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar