Search
Close this search box.

Potential anthelmintic effect of chitosan on Syphacia muris infecting Wistar rats: biochemical, immunological, and histopathological studies – Scientific Reports

  • Plachý, V. et al. The effect of Syphacia muris on nutrient digestibility in laboratory rats. Lab Anim. 50(1), 39–44. https://doi.org/10.1177/0023677215577038 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trelis, M. et al. Protective immunity against Echinostoma caproni in rats is induced by Syphacia muris infection. Int. J. Parasitol. 43(6), 453–463. https://doi.org/10.1016/j.ijpara.2012.12.009 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khalil, A. I., Lashein, G. H., Morsy, G. H. & Abd El-Mottaleb, D. I. Oxyurids of wild and laboratory rodents from Egypt. Life. Sci. J. 11(3), 94–107 (2014).


    Google Scholar
     

  • Kaplan, R. M. Anthelmintic resistance in nematodes of horses. Vet. Res. 33(5), 491–550. https://doi.org/10.1051/vetres:2002035 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Q., Rosa, B. A., Jasmer, D. P. & Mitreva, M. Pan-Nematoda transcriptomic elucidation of essential intestinal functions and therapeutic targets with broad potential. Ebio Med. 2(9), 1079–1089. https://doi.org/10.1016/j.ebiom.2015.07.030 (2015).

    Article 

    Google Scholar
     

  • Scantlebury, C. E. et al. Participatory study of medicinal plants used in the control of gastrointestinal parasites in donkeys in Eastern Shewa and Arsi zones of Oromia region, Ethiopia. BMC. Vet. Res. 9, 179. https://doi.org/10.1186/1746-6148-9-179 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Desoky, N. I., Hashem, N. M., Elkomy, A. & Abo-Elezz, Z. R. Physiological response and semen quality of rabbit bucks supplemented with Moringa leaves ethanolic extract during summer season. Animal 11(9), 1549–1557. https://doi.org/10.1017/S1751731117000088 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamdi, S. A. H. et al. Biological extraction, HPLC quantification and medical applications of astaxanthin extracted from crawfish “Procambarus clarkii” exoskeleton by-product. Biology 11(8), 1215. https://doi.org/10.3390/biology11081215 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamdi, S. A. H. et al. Bioprocess of astaxanthin extraction from shrimp waste via the common microorganisms Saccharomyces cerevisiae and Lactobacillus acidophilus in comparison to the chemical method. Biomass Convers. Bioref. https://doi.org/10.1007/s13399-022-02984-2 (2022).

    Article 

    Google Scholar
     

  • Bakshi, P. S., Selvakumar, D., Kadirvelu, K. & Kumar, N. S. Chitosan as an environment friendly biomaterial: A review on recent modifications and applications. Int. J. Biol. Macromol. 150, 1072–1083. https://doi.org/10.1016/j.ijbiomac.2019.10.113 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S. Competitive biological activities of chitosan and its derivatives: Antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int. J. Poly. Sci. 2018, 1–13. https://doi.org/10.1155/2018/1708172 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kyzas, G. Z. & Bikiaris, D. N. Recent modifications of chitosan for adsorption applications: A critical and systematic review. Mar. Drugs. 13(1), 312–337. https://doi.org/10.3390/md13010312 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koch, B. E., Stougaard, J. & Spaink, H. P. Keeping track of the growing number of biological functions of chitin and its interaction partners in biomedical research. Glycobiology. 25(5), 469–482. https://doi.org/10.1093/glycob/cwv005 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herdiana, Y., Wathoni, N., Shamsuddin, S., Joni, I. M. & Muchtaridi, M. Chitosan-based nanoparticles of targeted drug delivery system in breast cancer treatment. Polymers 13, 1717. https://doi.org/10.3390/polym13111717 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • López-Barrera, L. D. et al. Modification of proliferation and apoptosis in breast cancer cells by exposure of antioxidant nanoparticles due to modulation of the cellular redox state induced by doxorubicin exposure. Pharmaceutics 13(8), 1251. https://doi.org/10.3390/pharmaceutics13081251 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, L. et al. Advanced and innovative nano-systems for anticancer targeted drug delivery. Pharmaceutics 13(8), 1151. https://doi.org/10.3390/pharmaceutics13081151 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martín, A. R., Villegas, I., Sánchez-Hidalgo, M. & de la Lastra, C. A. The effects of resveratrol, a phytoalexin derived from red wines, on chronic inflammation induced in an experimentally induced colitis model. Br. J. Pharmacol. 147, 873–885. https://doi.org/10.1038/sj.bjp.0706469 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamdi, S. A. H. Extraction and characterization of Chitosan from Nile water crawfish Procambarus clarkia, Egypt. Cience Tec Vitivincola. 34(12), 1–17 (2019).


    Google Scholar
     

  • Hadi, A. G. Synthesis of chitosan and its use in metal removal. Chem. Mater. Res. 3(3), 22–27 (2013).


    Google Scholar
     

  • Meade, T. M. & Watson, J. Characterization of rat pinworm (Syphacia muris) epidemiology as a means increase detection and elimination. J. Am. Assoc. Lab. Anim. Sci. 53(6), 661–667 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wasso, S., Maina, N. & Kagira, J. Toxicity and anthelmintic efficacy of chitosan encapsulated bromelain against gastrointestinal strongyles in Small East African goats in Kenya. Vet. World 13(1), 177–183. https://doi.org/10.14202/vetworld.2020.177-183 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto, R. M. et al. Helminth parasites of conventionally maintained laboratory mice. Mem. Inst. Oswaldo. Cruz. 89, 33–40. https://doi.org/10.1590/s0074-02761994000100007 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bush, A., Lafferty, K., Lotz, J. & Shostak, A. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83(4), 575–83. https://doi.org/10.2307/3284227 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buege, J. A. & Aust, S. D. Microsomal lipid peroxidation. Methods Enzymol. 52, 302–310. https://doi.org/10.1016/s0076-6879(78)52032-6 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Montgomery, H. A. C. & Dymock, J. The determination of nitrite in water. Analyst. 86, 414–416 (1961).

    CAS 

    Google Scholar
     

  • Beutler, E., Duron, O. & Kelly, B. M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 61, 882–888 (1963).

    CAS 
    PubMed 

    Google Scholar
     

  • Aebi, H. Catalase in vitro methods. Enzymology 13, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3 (1984).

    Article 

    Google Scholar
     

  • Nishikimi, M., Appaji, N. & Yagi, K. The occurrence of superoxide anions in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 46(2), 849–854. https://doi.org/10.1016/s0006-291x(72)80218-3 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nomier, Y. A. Ameliorative effect of chitosan nanoparticles against carbon tetrachloride-induced nephrotoxicity in Wistar rats. Pharm. Biol. 60(1), 2134–2144. https://doi.org/10.1080/13880209.2022.2136208 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marei, N. H., Abd El Samiee, E., Salaheldin, T. A. & Saad, G. R. Isolation and characterization of chitosan from different local insects in Egypt. Int. J. Biol. Macromol. 82(3), 871–899. https://doi.org/10.1016/j.ijbiomac.2015.10.024 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vino, A. B., Ramasamy, P., Shanmugam, V. & Shanmugam, A. Extraction, characterization and in vitro antioxidative potential of chitosan and sulfated chitosan from Cuttlebone of Sepia aculeata Orbigny, 1848. Asian. Pac. J. Trop. Biomed. 2, S334–S341. https://doi.org/10.1016/S2221-1691(12)60184-1 (2012).

    Article 

    Google Scholar
     

  • Song, C. et al. Physicochemical properties and antioxidant activity of chitosan from the blowfly Chrysomya megacephala larvae. Int. J. Biol. Macromol. 60, 347–354. https://doi.org/10.1016/j.ijbiomac.2013.05.039 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shanmugam, A., Kathiresan, K. & Nayak, L. Preparation, characterization and antibacterial activity of chitosan and phosphorylated chitosan from cuttlebone of Sepia kobiensis (Hoyle, 1885). Biotechnol. Rep. (Amst) 19, 25–30. https://doi.org/10.1016/j.btre.2015.10.007 (2015).

    Article 

    Google Scholar
     

  • Abdel-Latif, M., El-Shahawi, G., Aboelhadid, S. M. & Abdel-Tawab, H. Immunoprotective effect of chitosan particles on Hymenolepis nana: Infected mice. Scand. J. Immunol. 86(2), 83–90. https://doi.org/10.1111/sji.12568 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salem, H. M. et al. Incidence of gastrointestinal parasites in pigeons with an assessment of the nematocidal activity of chitosan nanoparticles against Ascaridia columbae. Poult. Sci. 101(6), 101820. https://doi.org/10.1016/j.psj.2022.101820 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abu-Elala, N. M., Attia, M. M. & Abd-Elsalam, R. M. Chitosan- silver nanocomposites in goldfish aquaria: A new perspective in Lernae cyprinacea control. Int. J. Biol. Macromol. 111, 614–622. https://doi.org/10.1016/j.ijbiomac.2017.12.133 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Badawy, M. E. I. & Rabea, E. I. A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int. J. Carbohydr. Chem. 2011, 460381. https://doi.org/10.1155/2011/460381 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Rahimi, M., Kheirandish, F., Arab-Mazar, Z. & Mirzapour, A. Level of Liver Enzymes in patients with mono-parasitic infections. Infect. Epidemiol. Microbiol. 3(4), 137–142. https://doi.org/10.18869/modares.iem.3.4.137 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kot, K. Pathomechanisms in the kidneys in selected protozoan parasitic infections. Int. J. Mol. Sci. 22, 4209. https://doi.org/10.3390/ijms22084209 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ugbaja, R. N. et al. Chitosan from crabs (Scylla serrata) represses hyperlipidemia-induced hepato-renal dysfunctions in rats: Modulation of CD43 and p53 expression. Pathophysiology 28, 224–237. https://doi.org/10.3390/pathophysiology28020015 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nazarizadeh, A. & Asri-Rezaie, S. Comparative study of antidiabetic activity and oxidative stress induced by zinc oxide nanoparticles and zinc sulfate in diabetic rats. Am. Assoc. Pharma. Sci. 17, 834–843. https://doi.org/10.1208/s12249-015-0405-y (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ince, S., Kozan, E., Kucukkurt, I. & Bacak, E. The effect of levamisole and levamisole+vitamin C on oxidative damage in rats naturally infected with Syphacia muris. Exp. Parasitol. 124(4), 448–452. https://doi.org/10.1016/j.exppara.2009.12.017 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Da Silva, A. S. et al. Nitric oxide level, protein oxidation and antioxidant enzymes in rats infected by Trypanosoma evansi. Exp. Parasitol. 132(2), 166–70. https://doi.org/10.1016/j.exppara.2012.06.010 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saleh, M. A., Al-Salahy, M. B. & Sanousi, S. A. Oxidative stress in blood of camels (Camelus dromedaries) naturally infected with Trypanosoma evansi. Vet. Parasitol. 162, 192–199. https://doi.org/10.1016/j.vetpar.2009.03.035 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ozdek, U. et al. Protective effect of chitosan against lead-induced oxidative stress in rat kidney. Van. Vet. J. 30(3), 187–191. https://doi.org/10.36483/vanvetj.629310 (2019).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Chien, P. J., Sheu, F., Huang, W. T. & Su, M. S. Effect of molecular weight of chitosan on their antioxidative activities in apple juice. Food Chem. 102, 1192–1198. https://doi.org/10.1016/j.foodchem.2006.07.007 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Kim, K. W. & Thomas, R. Antioxidative activity of chitosan with varying molecular weights. Food. Chem. 101, 308–313. https://doi.org/10.1016/j.foodchem.2006.01.038 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Maizels, R. M. & McSorley, H. J. Regulation of the host immune system by helminth parasites. J. Allergy. Clin. Immunol. 138(3), 666–675. https://doi.org/10.1016/j.jaci.2016.07.007 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taghipour, N. et al. Syphacia obvelata: A New Hope to induction of intestinal immunological tolerance in C57BL/6 mice. Korean J. Parasitol. 55(4), 439–444. https://doi.org/10.3347/kjp.2017.55.4.439 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McSorley, H. J. & Smyth, D. J. IL-33: A central cytokine in helminth infections. Semin. Immunol. 53, 101532. https://doi.org/10.1016/j.smim.2021.101532 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato, Y. et al. Antibody production in Syphacia obvelata infected mice. J. Parasitol. 81(4), 559–562 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hermann, K., Ollert, M. & Ring, J. Antibody detection. In Principles of Immunopharmacology (eds Nijkamp, F. P. & Parnham, M. J.) (Birkhäuser, 2005).


    Google Scholar
     

  • Michels, C., Goyal, P., Nieuwenhuizen, N. & Brombacher, F. Infection with Syphacia obvelata (pinworm) induces protective Th2 immune responses and influences ovalbumin-induced allergic reactions. Infect. Immun. 74(10), 5926–5932. https://doi.org/10.1128/IAI.00207-06 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Humphreys, N. E. et al. IL-33, a potent inducer of adaptive immunity to intestinal nematodes. J. Immunol. 180(4), 2443–2449. https://doi.org/10.4049/jimmunol.180.4.2443 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 464(7293), 1367–1370. https://doi.org/10.1038/nature08900 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shlash, S. A., Alzubaidi, Z. F. & Saleh, H. A. Cytokine production in Ancylostoma duodenale infection. J. Med. Life 15(4), 479–482. https://doi.org/10.25122/jml-2021-0383 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perec, A. & Okulewicz, A. The presence of Syphacia obvelata in laboratory mice (BALB/c): Parasite antigens in immune response. Helminthologia 43, 203–207. https://doi.org/10.2478/s11687-006-0038-5 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Wright, V. & Bickle, Q. Immune responses following experimental human hookworm infection. Clin. Exp. Immunol. 142(2), 398–403. https://doi.org/10.1111/j.1365-2249.2005.02945.x (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Binder, J. et al. Downregulation of intra graft IFN-gamma expression correlates with increased IgG1 alloantibody response following intra-thymic immunomodulation of sensitized rat recipients. Transplantation 60(12), 1516–1524. https://doi.org/10.1097/00007890-199560120-00025 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cetre, C. et al. Profiles of Th1 and Th2 cytokines after primary and secondary infection by Schistosoma mansoni in the semi permissive rat host. Infect. Immun. 67(6), 2713–2719. https://doi.org/10.1128/IAI.67.6.2713-2719.1999 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, T., Ji, H., Zhang, L., Wang, Y. & Zhou, H. Chitosan oligosaccharide exerts anti-allergic effect against shrimp tropomyosin-induced food allergy by affecting Th1 and Th2 cytokines. Int. Arch. Allergy Immunol. 180(1), 10–16. https://doi.org/10.1159/000500720 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anwar, F. et al. Intestinal helminth infestation of sand rats (Psammomys obesus) collected from north coast Egypt ecological morphological and histopathological approach. Fresenius Environ. Bull. 31(13), 1–12 (2022).


    Google Scholar
     

  • Saracino, M. P. et al. Cellular and molecular changes and immune response in the intestinal mucosa during Trichinella spiralis early infection in rats. Parasites Vectors 13(1), 505. https://doi.org/10.1186/s13071-020-04377-8 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • John, J. L. Nematodes, and the spleen: An immunological relationship. Experientia 50(1), 15–22. https://doi.org/10.1007/BF01992043 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fahmy, A. M. & Diab, T. M. Therapeutic efficacy of albendazole and mefloquine alone or in combination against early and late stages of Trichinella Spiralis infection in mice. Helminthologia 58(2), 179–187. https://doi.org/10.2478/helm-2021-0016 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abd El-Fattah, H. et al. Chitosan as a hepato-protective agent against single oral dose of dioxin. IOSR J. Environ. Sci. Toxicol. Food. Technol. 7, 11–17. https://doi.org/10.9790/2402-0731117 (2013).

    Article 

    Google Scholar
     

  • Li, X. et al. The natural product chitosan enhances the anti-tumor activity of natural killer cells by activating dendritic cells. Oncoimmunology 7(6), 1431085. https://doi.org/10.1080/2162402X.2018.1431085 (2018).

    Article 

    Google Scholar