Population suppression by release of insects carrying a dominant sterile homing gene drive targeting doublesex in Drosophila – Nature Communications

  • Ferguson, N. M. Challenges and opportunities in controlling mosquito-borne infections. Nature 559, 490–497 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Maurya, R. P. et al. Biological control: A global perspective. Int. J. Trop. Insect Sci. 42, 3203–3220 (2022).

    Article 

    Google Scholar
     

  • Gould, F., Brown, Z. S. & Kuzma, J. Wicked evolution: Can we address the sociobiological dilemma of pesticide resistance? Science 360, 728–732 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Walsh, T. K. et al. Determinants of insecticide resistance evolution: Comparative analysis among heliothines. Annu. Rev. Entomol. 67, 387–406 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Tudi, M. et al. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public. Health 18, 1112 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bourtzis, K. & Vreysen, M. J. B. Sterile insect technique (SIT) and its applications. Insects 12, 638 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burt, A. & Crisanti, A. Gene drive: Evolved and synthetic. ACS Chem. Biol. 13, 343–346 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bier, E. Gene drives gaining speed. Nat. Rev. Genet. 1–18 https://doi.org/10.1038/s41576-021-00386-0 (2021).

  • Quinn, C. M. & Nolan, T. Nuclease-based gene drives, an innovative tool for insect vector control: advantages and challenges of the technology. Curr. Opin. Insect Sci. 39, 77–83 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Benedict, M. Q. Sterile insect technique: Lessons from the past. J. Med. Entomol. 58, 1974–1979 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Grilli, S., Galizi, R. & Taxiarchi, C. Genetic technologies for sustainable management of insect pests and disease vectors. Sustainability 13, 5653 (2021).

    Article 

    Google Scholar
     

  • Wang, G.-H. et al. Symbionts and gene drive: Two strategies to combat vector-borne disease. Trends Genet. 38, 708–723 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Maselko, M. et al. Engineering multiple species-like genetic incompatibilities in insects. Nat. Commun. 11, 4468 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M. et al. Suppressing mosquito populations with precision guided sterile males. Nat. Commun. 12, 5374 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hay, B. A., Oberhofer, G. & Guo, M. Engineering the composition and fate of wild populations with gene drive. Annu. Rev. Entomol. 66, 407–434 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Knipling, E. F. Sterile-male method of population control. Science 130, 902–904 (1959).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Scott, M. J., Concha, C., Welch, J. B., Phillips, P. L. & Skoda, S. R. Review of research advances in the screwworm eradication program over the past 25 years. Entomol. Exp. Appl. 164, 226–236 (2017).

    Article 

    Google Scholar
     

  • Hendrichs, J., Franz, G. & Rendon, P. Increased effectiveness and applicability of the sterile insect technique through male-only releases for control of mediterranean fruit flies during fruiting seasons. J. Appl. Entomol. 119, 371–377 (1995).

    Article 

    Google Scholar
     

  • Harris, A. F. et al. Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat. Biotechnol. 30, 828–830 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Thomas, D. D., Donnelly, C. A., Wood, R. J. & Alphey, L. S. Insect Population Control Using a Dominant, Repressible, Lethal Genetic System. Science 287, 2474–2476 (2000).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Black, W. C., Alphey, L. & James, A. A. Why RIDL is not SIT. Trends Parasitol. 27, 362–370 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Siddall, A., Harvey-Samuel, T., Chapman, T. & Leftwich, P. T. Manipulating insect sex determination pathways for genetic pest management: Opportunities and challenges. Front. Bioeng. Biotechnol. 10, 867851 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vásquez, V. N.; Reddy, M. R.; Marshall, J. M. Environmentally appropriate vector control is facilitated by standard metrics for simulation-based evaluation. Front. Trop. Dis. 3, https://doi.org/10.3389/fitd.2022.953212 (2022).

  • Leftwich, P. T. et al. Genetic elimination of field-cage populations of mediterranean fruit flies. Proc. R. Soc. B Biol. Sci. 281, https://doi.org/10.1098/rspb.2014.1372 (2014).

  • Labbé, G. M. C., Scaife, S., Morgan, S. A., Curtis, Z. H. & Alphey, L. Female-specific flightless (fsRIDL) phenotype for control of Aedes Albopictus. PLoS Negl. Trop. Dis. 6, e1724 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waltz, E. First genetically modified mosquitoes released in the United States. Nature 593, 175–176 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Harris, A. F. et al. Field performance of engineered male mosquitoes. Nat. Biotechnol. 29, 1034–1037 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Carvalho, D. O. et al. Suppression of a field population of Aedes Aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl. Trop. Dis. 9, e0003864 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harvey-Samuel, T., Ant, T., Gong, H., Morrison, N. I. & Alphey, L. Population-level effects of fitness Costs associated with repressible female-lethal transgene insertions in two pest insects. Evol. Appl. 7, 597–606 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, L. et al. Engineered female-specific lethality for control of pest Lepidoptera. ACS Synth. Biol. 2, 160–166 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Bax, N. J. & Thresher, R. E. Ecological, behavioral, and genetic factors influencing the recombinant control of invasive pests. Ecol. Appl. Publ. Ecol. Soc. Am. 19, 873–888 (2009).


    Google Scholar
     

  • Teem, J. L., Gutierrez, J. B. & Parshad, R. D. A comparison of the Trojan Y chromosome and daughterless carp eradication strategies. Biol. Invasions 16, 1217–1230 (2014).

    Article 

    Google Scholar
     

  • Thresher, R. E. Autocidal technology for the control of invasive fish Fisheries 33, 114–121 (2008).

  • Lutrat, C. et al. Combining two genetic sexing strains allows sorting of non-transgenic males for Aedes genetic control. Commun Biol 6, 646 (2023).

  • Kojin, B. B., Compton, A., Adelman, Z. N. & Tu, Z. Selective targeting of biting females to control mosquito-borne infectious diseases. Trends Parasitol. 38, 791–804 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilke, A. B. B. & Marrelli, M. T. Genetic control of mosquitoes: Population suppression strategies. Rev. Inst. Med. Trop. Sao Paulo 54, 287–292 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Qsim, M. et al. Genetically modified Aedes Aegypti to control dengue: A review. Crit. Rev. Eukaryot. Gene Expr. 27, 331–340 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Facchinelli, L. et al. Field cage studies and progressive evaluation of genetically-engineered mosquitoes. PLoS Negl. Trop. Dis. 7, e2001 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verkuijl, S. A. N., Ang, J. X. D., Alphey, L., Bonsall, M. B. & Anderson, M. A. E. The challenges in developing efficient and robust synthetic homing endonuclease gene drives. Front. Bioeng. Biotechnol. 0, 426 (2022).


    Google Scholar
     

  • Burt, A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc. R. Soc. B Biol. Sci. 270, 921–928 (2003).

    Article 

    Google Scholar
     

  • Hammond, A. et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the Malaria Mosquito vector Anopheles gambiae. Nat. Biotechnol. 34, 78–83 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Verhulst, E. C. & van de Zande, L. Double nexus–doublesex is the connecting element in sex determination. Brief. Funct. Genomics 14, 396–406 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kyrou, K. et al. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae Mosquitoes. Nat. Biotechnol. 36, 1062–1066 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krzywinska, E. et al. Femaleless controls sex determination and dosage compensation pathways in females of Anopheles Mosquitoes. Curr. Biol. 31, 1084–1091.e4 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koukidou, M. & Alphey, L. Practical applications of insects’ sexual development for pestcontrol. Sex. Dev. 8, 127–136 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Nagoshi, R. N., McKeown, M., Burtis, K. C., Belote, J. M. & Baker, B. S. The control of alternative splicing at genes regulating sexual differentiation in D. Melanogaster. Cell 53, 229–236 (1988).

    Article 
    PubMed 

    Google Scholar
     

  • Nagoshi, R. N. & Baker, B. S. Regulation of sex-specific RNA splicing at the Drosophila doublesex gene: cis-acting mutations in exon sequences alter sex-specific RNA splicing patterns. Genes Dev. 4, 89–97 (1990).

    Article 
    PubMed 

    Google Scholar
     

  • Ranian, K., Kashif Zahoor, M., Zulhussnain, M. & Ahmad, A. CRISPR/Cas9 Mediated sex-ratio distortion by sex specific gene editing in Aedes Aegypti. Saudi J. Biol. Sci. 29, 3015–3022 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yadav, A. K. et al. CRISPR/Cas9-based split homing gene drive targeting doublesex for population suppression of the global fruit pest Drosophila suzukii. Proc. Natl. Acad. Sci. USA 120, e2301525120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Champer, J. et al. Reducing resistance allele formation in CRISPR gene drive. Proc. Natl. Acad. Sci. USA 115, 5522–5527 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Unckless, R. L., Clark, A. G. & Messer, P. W. Evolution of resistance against CRISPR/Cas9 gene drive. Genetics 205, 827–841 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Beaghton, A. K., Hammond, A., Nolan, T., Crisanti, A. & Burt, A. Gene drive for population genetic control: non-functional resistance and parental effects. Proc. R. Soc. B Biol. Sci. 286, 20191586 (2019).

    Article 

    Google Scholar
     

  • Yang, E. et al. A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance alleles. GenesGenomesGenetics. https://doi.org/10.1093/g3journal/jkac081 (2022).

  • Champer, S. E. et al. Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs. Sci. Adv. 6, eaaz0525 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall, J. M. & Hay, B. A. Confinement of gene drive systems to local populations: A comparative analysis. J. Theor. Biol. 294, 153–171 (2012).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Adolfi, A. et al. Efficient population modification gene-drive rescue system in the Malaria Mosquito Anopheles Stephensi. Nat. Commun. 11, 1–13 (2020).

    Article 

    Google Scholar
     

  • Champer, J. et al. Molecular safeguarding of CRISPR gene drive experiments. ELife 8, e41439 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terradas, G. et al. Inherently confinable split-drive systems in Drosophila. Nat. Commun. 12, 1–12 (2021).

    Article 

    Google Scholar
     

  • Akbari, O. S. et al. Safeguarding gene drive experiments in the laboratory: Multiple stringent confinement strategies should be used whenever possible. Science 349, 927–929 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, J., Chen, J., Liu, Y., Xu, X. & Champer, J. Population suppression with dominant female-lethal alleles is boosted by homing gene drive. BMC Biol 22, 201 (2024).

  • Burt, A. & Deredec, A. Self-limiting population genetic control with sex-linked genome editors. Proc. R. Soc. B Biol. Sci. 285, https://doi.org/10.1098/rspb.2018.0776 (2018).

  • Epper, F. Morphological analysis and fate map of the intersexual genital disc of the mutant doublesex-dominant in Drosophila Melanogaster. Dev. Biol. 88, 104–114 (1981).

    Article 
    PubMed 

    Google Scholar
     

  • Waterbury, J. A., Jackson, L. L. & Schedl, P. Analysis of the doublesex female protein in drosophila melanogaster: Role on sexual differentiation and behavior and dependence on intersex. Genetics 152, 1653–1667 (1999).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burtis, K. C. & Baker, B. S. Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell 56, 997–1010 (1989).

    Article 
    PubMed 

    Google Scholar
     

  • Su, M. P. et al. Assessing the acoustic behaviour of anopheles gambiae (s.l.) dsxF mutants: Implications for vector control. Parasit. Vectors 13, 507 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, J. et al. Germline Cas9 promoters with improved performance for homing gene drive. Nat Commun 15, 4560 (2024).

  • Lynch, K. W. & Maniatis, T. Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer. Genes Dev. 10, 2089–2101 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Hedley, M. L. & Maniatis, T. Sex-specific splicing and polyadenylation of Dsx pre-mRNA requires a sequence that binds specifically to tra-2 protein in vitro. Cell 65, 579–586 (1991).

    Article 
    PubMed 

    Google Scholar
     

  • Ryner, L. C. & Baker, B. S. Regulation of doublesex Pre-mRNA processing occurs by 3’-splice site activation. Genes Dev. 5, 2071–2085 (1991).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, Y. & Champer, J. Simulations reveal high efficiency and confinement of a population suppression CRISPR toxin-antidote gene drive. ACS Synth. Biol. 12, 809–819 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Faber, N. R. et al. Improving the suppressive power of homing gene drive by co-targeting a distant-site female fertility gene. Nat Commun (in press), (2024).

  • López Del Amo, V. et al. Small-molecule control of super-mendelian inheritance in gene drives. Cell Rep. 31, 107841 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Davis, M. W. & Jorgensen, E. M. ApE, a Plasmid editor: A freely available DNA manipulation and visualization program. Front. Bioinforma. 0, 5 (2022).


    Google Scholar
     

  • Champer, J. et al. A CRISPR homing gene drive targeting a haplolethal gene removes resistancealleles and successfully spreads through a cage population. Proc. Natl. Acad. Sci. USA 117, 24377–24383 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haller, B. C. & Messer, P. W. SLiM 4: Multispecies eco-evolutionary modeling. Am. Nat. 201, E127–E139 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y., Teo, W., Yang, H. & Champer, J. Adversarial interspecies relationships facilitate population suppression by gene drive in spatially explicit models. Ecol. Lett. 26, 1174–1185 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Champer, S. E., Kim, I. K., Clark, A. G., Messer, P. W. & Champer, J. Anopheles homing suppression drive candidates exhibit unexpected performance differences in simulations with spatial structure. ELife, 11, https://doi.org/10.7554/ELIFE.79121 (2022).

  • Liu, Y.; Champer, J. Modelling homing suppression gene drive in haplodiploid organisms. Proc. R. Soc. B, 289, https://doi.org/10.1098/RSPB.2022.0320 (2022).

  • Liu, J. et al. Maximum likelihood estimation of fitness components in experimental evolution. Genetics 211, 1005–1017 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sjödin, P., Kaj, I., Krone, S., Lascoux, M. & Nordborg, M. On the meaning and existence of an effective population size. Genetics 169, 1061–1070 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nürnberger, B. Ecological genetics. In Encyclopedia of Biodiversity; Levin, S. A., Ed.; Elsevier: New York; pp 245–258 (2001).