Search
Close this search box.

Polymer replica of microcrystalline surface with dual wettability, mimicking a termite wing – Polymer Journal

  • Li J, Guo Z, Liu W. Biomimetic superhydrophobic materials construct from binary structure: a review on design, properties, and applications. Adv Mater Interfaces. 2022;10:2201847.

  • Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 1997;202:1–8.

    Article 
    CAS 

    Google Scholar
     

  • Yamamoto M, Nishikawa N, Mayama H, Nonomura Y, Yokojima S, Nakamura S, et al. Theoretical explanation of the lotus effect: Superhydrophobic property changes by removal of nanostructures from the surface of a lotus leaf. Langmuir. 2015;31:7355–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patankar NA. Mimicking the lotus effect: Influence of double roughness structures and slender pillars. Langmuir. 2004;20:8209–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uchida K, Nishimura R, Hatano E, Mayama H, Yokojima S. Photochromic crystalline systems mimicking bio-functions. Chem Eur J. 2018;24:8491–506.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Irie M. Diarylethene molecular photoswitches: concepts and functionalities. Wiley-VCH: Weinheim; 2021.

  • Nishimura R, Hyodo K, Sawaguchi H, Yamamoto Y, Nonomura Y, Mayama H, et al. Fractal surfaces of molecular crystals mimicking lotus leaf with phototunable double roughness structures. J Am Chem Soc. 2016;138:10299–303.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishimura R, Mayama H, Nonomura Y, Yokojima S, Nakamura S, Uchida K. Crystal growth technique for formation of double roughness structures mimicking lotus leaf. Langmuir. 2019;35:14124–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watson GS, Cribb BW, Watson JA. How micro/nanoarchitecture facilitates anti-wetting: an elegant hierarchical design on the termite wing. ACS Nano. 2010;4:129–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao XF, Yan X, Yao X, Xu L, Zhang K, Zhang JH, et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater. 2007;19:2213–7.

    Article 
    CAS 

    Google Scholar
     

  • Wisdom KM, Watson JA, Qu XP, Liu FJ, Watson GS, Chen CH. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate. Proc Natl Acad Sci USA. 2013;110:7992–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh J, Dana CE, Hong S, Roman JK, Jo KD, Hong JW, et al. Exploring the role of habitat on the wettability of cicada wings. ACS Appl Mater Interfaces. 2017;9:27173–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu C, Ju J, Zheng Y, Jiang L. Asymmetric ratchet effect for directional transport of fog drops on static and dynamic butterfly wings. ACS Nano. 2014;8:1321–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Q, Yao X, Liu H, Quéré D, Jiang L. Self-removal of condensed water on the legs of water striders. Proc Natl Acad Sci USA. 2015;112:9247–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang HX, An Y. Fabrication and condensate microdrop self-propelling of biomimetic nanostructured polymer surfaces without chemical modification. ACS Appl Polym Mater. 2019;1:939–43.

    Article 
    CAS 

    Google Scholar
     

  • Nishimura R, Hyodo K, Mayama H, Yokojima S, Nakamura S, Uchida K. Dual wettability on diarylethene microcrystalline surface mimicking a termite wing. Commun Chem. 2019;2:90.

    Article 

    Google Scholar
     

  • Chou SY, Krauss PR, Renstrom PJ. Nanoimprint lithography. J Vac Sci Technol B. 1996;14:4129–33.

    Article 
    CAS 

    Google Scholar
     

  • Guo LJ. Nanoimprint lithography: methods and material requirements. Adv Mater. 2007;19:495–513.

    Article 
    CAS 

    Google Scholar
     

  • Jeon J, Choi H, Cho W, Hong J, Youk JH, Wie JJ. Height-tunable replica molding using viscous polymeric resins. ACS Macro Lett. 2011;11:428–33.

    Article 

    Google Scholar
     

  • Hong SH, Hwang J, Lee H. Replication of cicada wing’s nano-patterns by hot embossing and UV nanoimprinting. Nanotechnology. 2009;20:385303.

    Article 
    PubMed 

    Google Scholar
     

  • Oh J, Hoffman JB, Hong S, Jo KD, Román-Kustas J, Reed JH, et al. Dissolvable template nanoimprint lithography: a facile and versatile nanoscale replication technique. Nano Lett. 2020;20:6989–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han Z, Wang Z, Li B, Feng X, Jiao Z, Zhang J, et al. Flexible self-cleaning broadband antireflective film inspired by the transparent cicada wings. ACS Appl Mater Interfaces. 2019;11:17019–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarrat B, Pecheyran C, Bourrigaud S, Billon L. Bioinspired material based on femtosecond laser machining of cast sheet micromolding as a pattern transfer process. Langmuir. 2011;27:3174–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xi J, Jiang L. Biomimic superhydrophobic surface with high adhesive forces. Ind Eng Chem Res. 2008;47:6354–7.

    Article 
    CAS 

    Google Scholar