Search
Close this search box.

Phytofabricated bimetallic synthesis of silver-copper nanoparticles using Aerva lanata extract to evaluate their potential cytotoxic and antimicrobial activities – Scientific Reports

  • de la Fuente-Núñez, C., Reffuveille, F., Fernández, L. & Hancock, R. E. W. Bacterial biofilm development as a multicellular adaptation: Antibiotic resistance and new therapeutic strategies. Curr. Opin. Microbiol. 16, 580–589 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Wibb, J. S. et al. Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 185, 4585–4592 (2003).

    Article 

    Google Scholar
     

  • Patrice, D. C. G. A. C. C. Evolution of antimicrobial resistance: Impact on antibiotic use. Semin. Respir. Crit. Care Med. 23, 449–456 (2002).

    Article 

    Google Scholar
     

  • Rice, L. B. Progress and challenges in implementing the research on ESKAPE pathogens. Infect. Control Hosp. Epidemiol. 31, S7–S10 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Elgundi, Z. et al. Cancer metastasis: The role of the extracellular matrix and the heparan sulfate proteoglycan perlecan. Front. Oncol. 9, 1482 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cluntun, A. A., Lukey, M. J., Cerione, R. A. & Locasale, J. W. Glutamine metabolism in cancer: Understanding the heterogeneity. Trends Cancer 3, 169–180 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, T. et al. Glutamine metabolism in cancers: Targeting the oxidative homeostasis. Front. Oncol. 12, 994672 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, N. et al. Bacterial metabolism during biofilm growth investigated by 13C tracing. Front. Microbiol. 9, 2657 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A. & Danquah, M. K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, G. et al. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. J. King Saud Univ. Sci. 31, 257–269 (2019).

    Article 

    Google Scholar
     

  • He, Y. et al. Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Adv. 7, 39842–39851 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mundekkad, D. & Cho, W. C. Nanoparticles in clinical translation for cancer therapy. Int. J. Mol. Sci. 23, 1685 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, F. et al. Plant-mediated synthesis of Ag–Pd alloy nanoparticles and their application as catalyst toward selective hydrogenation. ACS Sustain. Chem. Eng. 2, 1212–1218 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Loza, K., Heggen, M. & Epple, M. Synthesis, structure, properties, and applications of bimetallic nanoparticles of noble metals. Adv. Funct. Mater. 30, 1909260 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Padilla-Cruz, A. L. et al. Synthesis and design of Ag–Fe bimetallic nanoparticles as antimicrobial synergistic combination therapies against clinically relevant pathogens. Sci. Rep. 11, 5351 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mittal, A. K., Kumar, S. & Banerjee, U. C. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J. Colloid Interface Sci. 431, 194–199 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shah, S. et al. Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa. Biofouling 35, 34–49 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gomathi, A. C., Rajarathinam, S. R. X., Sadiq, A. M. & Rajeshkumar, S. Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. J. Drug Deliv. Sci. Technol. 55, 101376 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X.-F., Liu, Z.-G., Shen, W. & Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17, 1534 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pavithran, S., Pappuswamy, M., Annadurai, Y., Armugam, V. A. & Periyaswamy, T. Green synthesis of copper nanoparticles, characterization and their applications. J. Appl. Life Sci. Int. 23, 10–24 (2020).

    Article 

    Google Scholar
     

  • Ghumman, S. A. et al. Mimosa pudica mucilage nanoparticles of losartan potassium: Characterization and pharmacodynamics evaluation. Saudi Pharm. J. 31, 101695 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parvekar, P., Palaskar, J., Metgud, S., Maria, R. & Dutta, S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater. Investig. Dent. 7, 105–109 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shanmugam, R. & Chelladurai, M. In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorg. Chem. Appl. 2014, 581890 (2014).


    Google Scholar
     

  • Hassan, A. et al. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz. J. Infect. Dis. 15, 305–311 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Kalishwaralal, K., BarathManiKanth, S., Pandian, S. R. K., Deepak, V. & Gurunathan, S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf. B Biointerfaces 79, 340–344 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gandhi, A. D. et al. In vitro anti- biofilm and anti-bacterial activity of Sesbania grandiflora extract against Staphylococcus aureus. Biochem. Biophys. Rep. 12, 193–197 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ludwig, T. G. & Goldberg, H. J. V. The anthrone method for the determination of carbohydrates in foods and in oral rinsing. J. Dent. Res. 35, 90–94 (1956).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alavi, M. & Karimi, N. Characterization, antibacterial, total antioxidant, scavenging, reducing power and ion chelating activities of green synthesized silver, copper and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract. Artif. Cells Nanomed. Biotechnol. 46, 2066–2081 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Ferreira, I. C. F. R., Baptista, P., Vilas-Boas, M. & Barros, L. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem. 100, 1511–1516 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Sivamaruthi, B. S., Ramkumar, V. S., Archunan, G., Chaiyasut, C. & Suganthy, N. Biogenic synthesis of silver palladium bimetallic nanoparticles from fruit extract of Terminalia chebula—In vitro evaluation of anticancer and antimicrobial activity. J. Drug Deliv. Sci. Technol. 51, 139–151 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Goyal, M., Pareek, A., Nagori, B. & Sasmal, D. Aerva lanata: A review on phytochemistry and pharmacological aspects. Pharmacogn. Rev. 5, 195–198 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y., Kumar, D., Prasad, D. N., Singh, R. K. & Ma, Y. Morphoanatomic, physicochemical, and phytochemical standardization with HPTLC fingerprinting of aerial parts of Aerva lanata (Linn) Juss ex Schult. J. Tradit. Chin. Med. Sci. 2, 39–44 (2015).


    Google Scholar
     

  • Moteriya, P. & Chanda, S. Synthesis and characterization of silver nanoparticles using Caesalpinia pulcherrima flower extract and assessment of their in vitro antimicrobial, antioxidant, cytotoxic, and genotoxic activities. Artif. Cells Nanomed. Biotechnol. 45, 1556–1567 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanniah, P. et al. Green synthesis of multifaceted silver nanoparticles using the flower extract of Aerva lanata and evaluation of its biological and environmental applications. ChemistrySelect 5, 2322–2331 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kumar, G., Karthik, L. & Rao, K. V. B. Phytochemical composition and in vitro antioxidant activity of aqueous extract of Aerva lanata (L.) Juss. ex Schult. Stem (Amaranthaceae). Asian Pac. J. Trop. Med. 6, 180–187 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joseph, S. & Mathew, B. Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 136, 1371–1379 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barapatre, A., Aadil, K. R. & Jha, H. Synergistic antibacterial and antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading fungus. Bioresour. Bioprocess. 3, 8 (2016).

    Article 

    Google Scholar
     

  • Kobayashi, Y., Maeda, T., Yasuda, Y. & Morita, T. Metal–metal bonding using silver/copper nanoparticles. Appl. Nanosci. 6, 883–893 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ismail, M. et al. Green synthesis of plant supported CuAg and CuNi bimetallic nanoparticles in the reduction of nitrophenols and organic dyes for water treatment. J. Mol. Liq. 260, 78–91 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Halder, M. et al. Biogenic nano-CuO-catalyzed facile C-N cross-coupling reactions: Scope and mechanism. ACS Sustain. Chem. Eng. 5, 648–657 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ismail, M. et al. Green synthesis of antibacterial bimetallic Ag–Cu nanoparticles for catalytic reduction of persistent organic pollutants. J. Mater. Sci. Mater. Electron. 29, 20840–20855 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Al Tamimi, S. et al. Synthesis and analysis of silver–copper alloy nanoparticles of different ratios manifest anticancer activity in breast cancer cells. Cancer Nanotechnol. 11, 13 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pelletier, D. A. et al. Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl. Environ. Microbiol. 76, 7981–7989 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pal, S., Tak, Y. K. & Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712–1720 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naidu, S. et al. Green synthesis of silver nanoparticles using flower extracts of Aerva lanata and their biomedical applications. Part. Sci. Technol. 40, 84–96 (2022).

    Article 

    Google Scholar
     

  • Al-Ansari, M. et al. Identification of phytochemical components from Aerva lanata (Linn.) medicinal plants and its in-vitro inhibitory activity against drug resistant microbial pathogens and antioxidant properties. Saudi J. Biol. Sci. 26, 1129–1133 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thanganadar Appapalam, S. & Panchamoorthy, R. Aerva lanata mediated phytofabrication of silver nanoparticles and evaluation of their antibacterial activity against wound associated bacteria. J. Taiwan Inst. Chem. Eng. 78, 539–551 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Guzman, M., Dille, J. & Godet, S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 8, 37–45 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Slavin, Y. N., Asnis, J., Häfeli, U. O. & Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15, 65 (2017).

    Article 

    Google Scholar
     

  • Ghosh, S. et al. Dioscorea Bulbifera mediated synthesis of novel AucoreAgshell nanoparticles with potent antibiofilm and antileishmanial activity. J. Nanomater. 16, 1–12 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Borcherding, J. et al. Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function. Environ. Sci. Nano 1, 123–132 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Sheddi, E. S. et al. Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg. Chem. Appl. 2018, e9390784 (2018).

    Article 

    Google Scholar
     

  • Sharma, D. et al. An investigation of physicochemical and biological properties of rheum emodi-mediated bimetallic Ag–Cu nanoparticles. Arab. J. Sci. Eng. 46, 275–285 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Walling, C. Fenton’s reagent revisited. Acc. Chem. Res. 8, 125–131 (1975).

    Article 
    CAS 

    Google Scholar