Search
Close this search box.

Phytochemical composition and in vitro antioxidant and antimicrobial activities of Bersama abyssinica F. seed extracts – Scientific Reports

  • Kaliyaperumal, K., Kaliyaperumal, J., Jegajeevanram, V. & Embialle, M. Traditional medicinal plants: A source of phytotherapeutic modality in resource-constrained health care settings. J. Evid. Based Complement. Altern. Med. 18(1), 67–74. https://doi.org/10.1177/2156587212460241 (2013).

    Article 

    Google Scholar
     

  • Aragaw, T. J., Afework, D. T. & Getahun, K. A. Assessment of knowledge, attitude, and utilization of traditional medicine among the communities of Debre Tabor Town, Amhara Regional State, North Central Ethiopia: A cross-sectional study. J. Evid. Based Complement. Altern. Med. 20(20), 1–10. https://doi.org/10.1155/2020/6565131 (2020).

    Article 

    Google Scholar
     

  • Teka, A. et al. Medicinal plant use practice in four ethnic communities (Gurage, Mareqo, Qebena, and Silti), south-central Ethiopia. J. Ethnobiol. Ethnomed. 16(1), 1–12. https://doi.org/10.1186/s13002-020-00377-1 (2020).

    Article 

    Google Scholar
     

  • Kuadio, I. S. et al. Biopotential of Bersama abyssinica Fresen stem bark extracts: UHPLC profiles, antioxidant, enzyme inhibitory, and antiproliferative propensities. J. Antioxid. 9(163), 1–19. https://doi.org/10.3390/antiox9020163 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Thabo, M., Dulcie, M. & Geoff, N. Triterpenoids from Bersama swinnyi. J. Phytochem. 49(6), 1819–1820. https://doi.org/10.1016/s0031-9422(98)00306-9 (1998).

    Article 

    Google Scholar
     

  • Okello, S. V., Nyunja, R. O., Netondo, G. W. & Onyango, J. C. Ethnobotanical study of medicinal plants used by sabaots of Mt. Elgon Kenya. Afr. J. Trad. Complement. Altern. Med. 7(1), 1–10. https://doi.org/10.4314/ajtcam.v7i1.57223 (2010).

    Article 

    Google Scholar
     

  • Bekele, G. & Ramachandra, R. Ethnobotanical study of medicinal plants used to treat human ailments by Guji Oromo Tribes in Abaya District, Borana, Oromia, Ethiopia. Univ. J. Plant Sci. 3(1), 1–8. https://doi.org/10.13189/ujps.2015.030101 (2015).

    Article 

    Google Scholar
     

  • Yayesh, L., Shemsu, U. & Messay, W.-M. Ethnobotanical study on traditional medicinal plants in Dega Damot Woreda, Amhara Region, North Ethiopia. IJRPC 5(2), 258–273 (2015).


    Google Scholar
     

  • Solome, M. T., Tiruzer, B. G., Mohammedbrhan, A. & Tezera, J. A. Wound healing activities of hydromethanolic crude extract and solvent fractions of Bersama abyssinica leaves in mice. eCAM 21(21), 1–20. https://doi.org/10.1155/2021/9991146 (2021).

    Article 

    Google Scholar
     

  • Abebe, W. An overview of Ethiopian traditional medicinal plants used for cancer treatment. EJMP 14(4), 1–16. https://doi.org/10.9734/EJMP/2016/25670 (2016).

    Article 

    Google Scholar
     

  • Bizuneh, W., Reta, R., Tibebu, A. & Moa, M. Medicinal plants used for treatment of diarrhoeal related diseases in Ethiopia. eCAM 18, 1–21. https://doi.org/10.1155/2018/4630371 (2018).

    Article 

    Google Scholar
     

  • Kidane, B., van Andel, T., van der Maesen, L. J. G. & Zemede, A. Use and management of traditional medicinal plants by Maale and Ari ethnic communities in southern Ethiopia. J. Ethnobiol. Ethnomed. 10(46), 1–15 (2014).


    Google Scholar
     

  • Nigatu, T., Beyene, P. & Zemede, A. Medicinal plants used by traditional healers to treat malignancies and other human ailments in Dalle District, Sidama Zone. Ethiopia. J. Ethnobiol. Ethnomed. 14(15), 1–21. https://doi.org/10.1186/s13002-018-0213-z (2018).

    Article 

    Google Scholar
     

  • Teka, A. et al. In vitro antimicrobial activity of plants used in traditional medicine in Gurage and Silti Zones, south-central Ethiopia. BMC Complement. Altern. Med. 15(286), 1–7. https://doi.org/10.1186/s12906-015-0822-1 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Jelic, M. D. et al. Oxidative stress and its role in cancer. J. Cancer Res. Therap. 17(1), 22–28. https://doi.org/10.4103/jcrt.JCRT_862_16 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bilgen, F. et al. The effect of oxidative stress and Raftlin levels on wound healing. Int. Wound J. 16(5), 1178–1184. https://doi.org/10.1111/iwj.13177 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yaribeygi, H., Sathyapalan, T. & Atkin, S. L. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid. Med. Cell Longev. 2020, 1–13. https://doi.org/10.1155/2020/8609213 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ty, M. C. et al. Malaria inflammation by xanthine oxidase-produced reactive oxygen species. EMBO Mol. Med. 11(8), 9903. https://doi.org/10.15252/emmm.201809903 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Foudah, A. I. et al. Evaluation of the composition and in vitro antimicrobial, antioxidant, and anti-inflammatory activities of Cilantro (Coriandrum sativum L. leaves) cultivated in Saudi Arabia (Al-Kharj). Saudi J. Biol. Sci. 28(6), 3461–3468. https://doi.org/10.1016/j.sjbs.2021.03.011 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization. Fact Sheets Antimicrobial Resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (Accessed 17 November 2021) (2022).

  • Spernovasilis, N., Tsiodras, S. & Poulakou, G. Emerging and re-emerging infectious diseases: Humankind’s companions and competitors. J. Microorg. 10(1), 98. https://doi.org/10.3390/microorganisms10010098 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lobo, V., Patil, A., Phatak, A. & Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 4(8), 118. https://doi.org/10.4103/0973-7847.70902 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • ElevationMap. Topographic Map of Semar Semarye, Sude, Arsi, Ethiopia. http://elevationmap.net/semar-semarye-sude-arsi-et-1011130067 (Accessed 12 May 2022) (2018).

  • Tegelberg, R., Virjamo, V. & Julkunen-Tiitto, R. Dry-air drying at room temperature—A practical pre-treatment method of tree leaves for quantitative analyses of phenolics. Phytchem. Anal. https://doi.org/10.1002/pca.2755) (2018).

    Article 

    Google Scholar
     

  • Parbuntari, H., Prestica, Y., Gunawan, R., Nurman, M. & Adella, F. Preliminary phytochemical screening (qualitative analysis) of cacao leaves (Theobroma cacao L.). EKSAKTA 19(2), 40–48. https://doi.org/10.24036/eksakta/vol19-iss02/142 (2018).

    Article 

    Google Scholar
     

  • Junaid, R. S. & Patil, M. K. Qualitative tests for preliminary phytochemical screening: An overview. Int. J. Chem. Stud. 8(2), 603–608. https://doi.org/10.22271/chemi.2020.v8.i2i.8834 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Daisy, S., Ramesh, V. M. & Arunachalam, M. In vitro antidermatophytic activity of bioactive compounds from selected medicinal plants. J. Anal. Sci. Technol. 12(53), 1–13. https://doi.org/10.1186/s40543-021-00304-3 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nagaraju, K., Anusha, D., Chitra, K. & Ravi, B. K. Preliminary analysis of phytoconstituents and evaluation of anthelminthic property of Cayratia auriculata (in vitro). J. Clin. Med. 14(4), 350–356. https://doi.org/10.26574/maedica.2019.14.4.350 (2019).

    Article 

    Google Scholar
     

  • Rohit, K. B. Preliminary test of phytochemical screening of crude ethanolic and aqueous extract of Moringa pterygosperma Gaertn. J. Pharmacogn. Phytochem. 4(1), 7–9 (2015).


    Google Scholar
     

  • Ramya, P., Vasanth, P. M., Prasad, P. V. & Sarath, B. V. Qualitative phytochemical screening tests of Alpinia galanga L.. World J. Pharmac. Res. 8(5), 1064–1077 (2019).

    CAS 

    Google Scholar
     

  • Peter, M. & Maano, V. M. Phytochemical investigation, antioxidant and antimycobacterial activities of Schkuhria pinnata (Lam) thell extracts against Mycobacterium smegmatis. JEBIM 24(19), 1–8. https://doi.org/10.1177/2515690X19866104 (2019).

    Article 

    Google Scholar
     

  • Mohammadi, M. S., Shahidi-Motlagh, S., Bagherzadeh, H., Azad Forouz, S. & Tafazoli, H. Evaluation of antioxidant activity of Ruta graveolens L. extract on inhibition of lipid peroxidation and DPPH radicals and the effects of some external factors on plant extract’s potency. RJP 1(2014), 45–50 (2014).


    Google Scholar
     

  • Ahmed, D., Fatima, M. & Saeed, S. Phenolic and flavonoid contents and anti-oxidative potential of epicarp and mesocarp of Lagenaria siceraria fruit: A comparative study. Asian Pac. J. Trop. Med. 7(1), 249–255. https://doi.org/10.1016/S1995-7645(14)60241-8 (2014).

    Article 

    Google Scholar
     

  • Yuan, C. et al. Radical scavenging activities of novel cationic inulin derivatives. MDPI Polym. 10(1295), 1–11. https://doi.org/10.3390/polym10121295 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ebani, V. V. et al. Antimicrobial activity of essential oils against Staphylococcus and Malassezia strains isolated from canine dermatitis. MDPI Microorg. 8(252), 252. https://doi.org/10.3390/microorganisms8020252 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Valgas, C. et al. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 38, 369–380. https://doi.org/10.1590/S1517-83822007000200034 (2007).

    Article 

    Google Scholar
     

  • Magaldi, S. et al. Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis. 8(1), 39–45. https://doi.org/10.1016/j.ijid.2003.03.002 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebrahimabadi, A. H. et al. Essential oil composition and antioxidant and antimicrobial properties of the aerial parts of Salvia eremophila Boiss. from Iran. Food Chem. Toxicol. 48(5), 1371–1376. https://doi.org/10.1016/j.fct.2010.03.003 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fitsum, L., Solomon, G., Kebede, S. & Milkyas, E. Antibacterial steroids from roots of Bersama abyssinica. Ethiop. J. Sci. Sustain. Dev. 7(1), 1–8. https://doi.org/10.20372/ejssdastu:v7.i1.2020.156 (2020).

    Article 

    Google Scholar
     

  • Mathewos, A., Feleke, W., Solomon, L., Fikre, M. & Milkyas, E. Phytochemical screening and antibacterial activity of leaves extract of Bersama abyssinica. J. Adv. Bot. Zool. 3(2), 1–6. https://doi.org/10.15297/JABZ.V3I2.07 (2015).

    Article 

    Google Scholar
     

  • Watcho, P. et al. Hypoglycemic and hypolipidemic effects of Bersama engleriana leaves in nicotinamide/streptozotocin-induced type 2 diabetic rats. BMC Complement. Altern. Med. 12(264), 1–6 (2012).


    Google Scholar
     

  • Belkheir, A. K. et al. Benzophenone synthase and chalcone synthase accumulate in the mesophyll of Hypericum perforatum leaves at different developmental stages. Front. Plant Sci. 7, 921. https://doi.org/10.3389/fpls.2016.00921 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verma, N. & Shukla, S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plants 2(4), 105–113. https://doi.org/10.1016/j.jarmap.2015.09.002 (2015).

    Article 

    Google Scholar
     

  • Zekeya, N. et al. Potential of natural phenolic antioxidant compounds from Bersama abyssinica (Meliathacea) for treatment of chronic diseases. Saudi J. Biol. Sci. 29(6), 1–7. https://doi.org/10.1016/j.sjbs.2022.03.023 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gemechu, A., Aseer, M. & Akbar, I. Phytochemical analysis and antimicrobial activity of Bersama abyssinica Fresen against multidrug-resistant bacterial uropathogens: Picolinyl hydrazide is a major compound. J. Herb. Spices Med. Plants 25(4), 389–400. https://doi.org/10.1080/10496475.2019.1635940 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Salehi, B. et al. Therapeutic potential of α- and β-pinene: A miracle gift of nature. MDPI Biomol. 9(11), 1–34. https://doi.org/10.3390/biom9110738 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zengin, H. & Baysal, A. H. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. J. Mol. 19(11), 17773–17798. https://doi.org/10.3390/molecules191117773 (2014).

    Article 
    CAS 

    Google Scholar
     

  • de Oliveira, T. M. et al. Evaluation of p-cymene, a natural antioxidant. Pharm. Biol. 53(3), 423–428. https://doi.org/10.3109/13880209.2014.923003 (2015).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. Y., Chen, Y. W. & Yao, H. C. Antioxidant and antibacterial activity of seven predominant terpenoids. Int. J. Food Prop. 22(1), 230–238. https://doi.org/10.1080/10942912.2019.1582541 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. H., Sun, H. L., Chen, S. Y., Zeng, L. & Wang, T. T. Anti-fungal activity, mechanism studies on α-phellandrene and nonanal against Penicillium cyclopium. Bot. Stud. 58(13), 1–19. https://doi.org/10.1186/s40529-017-0168-8 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Paudel, M. R. & Chand, M. B. Assessment of antioxidant and cytotoxic activities of extracts of Dendrobium crepidatum. MDPI Mol. 9(9), 478–91. https://doi.org/10.3390/biom9090478 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Raghavendra, H. & Prashith, K. T. R. Antiradical and lipid peroxidation inhibitory activity of ripe and unripe fruit of Rubus steudneri Schweinf. (Rosaceae). Pharmacogn. J. 10(4), 818–822 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kouadio, I. S. et al. A comparative study of the HPLC-MS profiles and biological efficiency of different solvent leaf extracts of two African plants: Bersama abyssinica and Scoparia dulcis. Int. J. Environ. Health Res. 31, 1–14. https://doi.org/10.1080/09603123.2019.1652885 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tauchen, J. et al. In vitro antioxidant and anti-proliferative activity of Ethiopian medicinal plant extracts. Ind. Crops Prod. 74, 671–679. https://doi.org/10.1016/j.indcrop.2015.05.068 (2015).

    Article 

    Google Scholar
     

  • Kim, J. S. Evaluation of in vitro antioxidant activity of the water extract obtained from dried pine needle (Pinus densiflora). Prev. Nutr. Food Sci. 23(2), 134–143. https://doi.org/10.3746/pnf.2018.23.2.134 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abeyrathne, E. D., Nam, K. & Ahn, D. U. Analytical methods for lipid oxidation and antioxidant capacity in food systems. MDPI Antioxid. 10(1587), 1–19. https://doi.org/10.3390/antiox10101587 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Niki, E., Yoshida, Y., Saito, Y. & Noguchi, N. Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochem. Biophys. Res. Commun. 338(1), 668–676. https://doi.org/10.1016/j.bbrc.2005.08.072 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saito, M. Polychlorinated biphenyls-induced lipid peroxidation as measured by thiobarbituric acid-reactive substances in liver subcellular fractions of rats. Biochim. Biophys. Acta 1046(3), 301–308. https://doi.org/10.1016/0005-2760(90)90245-S (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogunmefun, O. T., Fasola, T. R., Saba, A. B. & Akinyemi, A. J. Inhibitory effect of Phragmanthera incana (Schum.) Harvested from Cocoa (Theobroma cacao) and Kolanut (Cola nitida) trees on Fe(2+) induced lipid oxidative stress in some rat tissues—In vitro. Int. J. Biomed. Sci. 11(1), 16–22 (2015).

    Article 
    PubMed Central 

    Google Scholar
     

  • Akomolafe, S. F., Oboh, G., Akindahunsi, A., Akinyemi, A. & Tade, O. Inhibitory effect of aqueous extract of stem bark of Cissus populnea on ferrous sulphate- and sodium nitroprusside induced oxidative stress in rat’s testes in vitro. ISRN Pharmacol. 2013, 1–8. https://doi.org/10.1155/2013/130989 (2013).

    Article 

    Google Scholar
     

  • Nehir, E. S. & Sibel, K. Radical scavenging and iron-chelating activities of some greens used as traditional dishes in Mediterranean diet. Int. J. Food Sci. Nutr. 55(1), 67–74. https://doi.org/10.1080/09637480310001642501 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Anna, M., Magdalena, J., Dawid, S., Tomasz, C. & Łukasz, M. Anticancer, antioxidant, and antibacterial activities of low molecular weight bioactive subfractions isolated from cultures of wood degrading fungus Cerrena unicolor. PLoS ONE 13(6), 1–14. https://doi.org/10.1371/journal.pone.0197044 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Moukette, B. M. et al. In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenol composition of a non-timber forest product used as spice: Monodora myristica. Biol. Res. 48(15), 1–17. https://doi.org/10.1186/s40659-015-0003-1 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mathew, S., Emilia, A. T. & Akmar, Z. Z. Reactivity of phenolic compounds towards free radicals under in vitro conditions. J. Food Sci. Technol. 52(9), 5790–5798. https://doi.org/10.1007/s13197-014-1704-0 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Zoysa, M. H. N., Rathnayake, H., Hewawasam, R. P. & Wijayaratne, W. M. D. G. B. Determination of in vitro antimicrobial activity of five Sri Lankan medicinal plants against selected human pathogenic bacteria. Int. J. Microbiol. 2019(2019), 1–8. https://doi.org/10.1155/2019/7431439 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sader, H. S., Castanheira, M., Flamm, R. K., Farrell, D. J. & Jones, R. N. Antimicrobial activity of ceftazidime-avibactam against Gram-negative organisms collected from US medical centers in 2012. Antimicrob. Agents Chemother. 58(3), 1684–1692. https://doi.org/10.1128/AAC.02429-13 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amuka, O., Machocho, A. K., Okemo, P. O. & Mbugua, P. K. Antifungal and antibacterial activity of crude stem bark extracts’ of Bersama abysinicca Verdc. and Faurea saligna Harr. research. J. Med. Plant 9(4), 160–169. https://doi.org/10.3923/rjmp.2015.160.169 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mussin, J. E. et al. Antifungal activity of silver nanoparticles in combination with ketoconazole against Malassezia furfur. AMB Expr. 9(131), 1–9. https://doi.org/10.1186/s13568-019-0857-7 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Anasane, N. et al. Acidophilic actinobacteria synthesized silver nanoparticles showed remarkable activity against fungi-causing superficial mycoses in humans. J. Mycoses 59(3), 157–166. https://doi.org/10.1111/myc.12445 (2016).

    Article 
    CAS 

    Google Scholar