Physio-biochemical responses and crop performance analysis in chickpea upon botanical priming – Scientific Reports

  • Agrawal, T. et al. Correlation and path coefficient analysis for grain yield and yield components in chickpea (Cicer arietinum L.) under normal and late sown conditions of Bihar. Int. J. Curr. Microbiol. Appl. Sci. 7(2), 1633–1642. https://doi.org/10.20546/ijcmas.2018.702.197 (2018).

    Article 

    Google Scholar
     

  • Krishnamurthy, L., Johansen, C. & Sethi, S. C. Investigation of factors determining genotypic differences in seed yield of non-irrigated and irrigated chickpeas using a physiological model of yield determination. J. Agron. Crop Sci. 183(1), 9–17. https://doi.org/10.1046/j.1439-037x.1999.00306.x (1999).

    Article 

    Google Scholar
     

  • Srinivasan, A., Johansen, C. & Saxena, N. P. Cold International Journal of Current Microbiology and Applied Science tolerance during early reproductive growth of chickpea (Cicer arietinum L.) characterization of stress and genotypic variation in pod set. Field Crops Res. 57, 181–193. https://doi.org/10.1016/S0378-4290(97)00118-4 (1998).

    Article 

    Google Scholar
     

  • Jame, Y. W. & Cutforth, H. W. Simulating the effects of temperature and seeding depth on germination and emergence of spring wheat. Agric. Meteorol. 124(3–4), 207–218. https://doi.org/10.1016/j.agrformet.2004.01.012 (2004).

    Article 

    Google Scholar
     

  • Farooq, M., Basra, S. M. A., Ahmad, N. & Hafeez, K. Thermal hardening: A new seed vigour enhancement tool in rice. J. Integr. Plant Biol. 47(2), 187–193. https://doi.org/10.1111/j.1744-7909.2005.00031.x (2005).

    Article 

    Google Scholar
     

  • Farooq, M., Aziz, T., Wahid, A., Lee, D. J. & Siddique, K. H. Chilling tolerance in maize: Agronomic and physiological applications. Crop Pasture Sci. 60(6), 501–516. https://doi.org/10.1071/CP08427 (2009).

    Article 

    Google Scholar
     

  • Taylor, A.G., Thomas, B.D.J. & Murphy, B.G. Seed treatments, in: Encyclopedia of Applied Plant Science pp.1291–1298, https://doi.org/10.1016/B0-12-227050-9/00049-1 (2003).

  • Heydecker, W. & Gibbins, B. M. The “priming” of seeds. Sympos. Seed Problems Horticult. 83, 213–224. https://doi.org/10.17660/ActaHortic.1978.83.29 (1977).

    Article 

    Google Scholar
     

  • Farooq, M., Basra, S. M., Wahid, A. & Ahmad, N. Changes in nutrient-homeostasis and reserves metabolism during rice seed priming: consequences for seedling emergence and growth. Agril. Sci. China 9(2), 191–198. https://doi.org/10.1016/S1671-2927(09)60083-3 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kaur, S., Gupta, A. K. & Kaur, N. Seed priming increases crop yield possibly by modulating enzymes of sucrose metabolism in chickpea. J. Agron. Crop Sci. 191(2), 81–87. https://doi.org/10.1111/j.1439-037X.2004.00140.x (2005).

    Article 

    Google Scholar
     

  • Karunagaran, D. & Rao, P. R. Mode and control of starch mobilization during germination of seeds of horse gram. Plant Sci. 73(2), 155–159. https://doi.org/10.1016/0168-9452(91)90023-2 (1991).

    Article 

    Google Scholar
     

  • Tan-Wilson, A. L. & Wilson, K. A. Mobilization of seed protein reserves. Physiol. Plant 145(1), 140–53. https://doi.org/10.1111/j.1399-3054.2011.01535.x (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oaikhena, E. E., Ajibade, G. A., Appah, J. & Bello, M. Dehydrogenase enzyme activities in germinating cowpea (Vigna unguiculata (L)Walp). J. Biol. Agric. Healthc. 3(20), 32–36 (2013).


    Google Scholar
     

  • Oberleas, D. The determination of phytate and inositol phosphates. Methods Biochem. Anal. https://doi.org/10.1002/9780470110393 (1971).

    Article 
    PubMed 

    Google Scholar
     

  • Yamamoto, Y., Kobayashi, Y. & Matsumoto, H. Lipid peroxidation is an early symptom triggered by aluminium but not the primary cause of elongation inhibition in pea roots. Plant Physiol. 125(1), 199–208. https://doi.org/10.1104/pp.125.1.199 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jambunathan, R. Distribution of seed protein fractions and amino acids in different anatomical parts of chickpea (Cicer arietinum L.) and pigeon pea (Cajanus cajan L.). Plant Foods Hum. Nutr. 32, 347–54. https://doi.org/10.1007/BF01094046 (1982).

    Article 

    Google Scholar
     

  • Hatice, S., Duygu, S., Tuba, E., Zeybek, A. & Toker, C. Effect of seed priming on germination of relict beautiful (Vavilovia Formosa). Al. Fed. Mediterranean Agril. Sci. 34(1), 101–108. https://doi.org/10.29136/mediterranean.785458 (2021).

    Article 

    Google Scholar
     

  • Osborne, T.B. The proteins of the wheat kernel. Carnegie Institution of Washington, Publication no. 84, Judd & Detweiler. Inc., Washington, DC (1907).

  • Gunasekar, J., Kamaraj, A. & Padmavathi, S. Effect of botanical seed priming on seed quality characters in black gram (vigna mungo L.) Hepper cv. CO6. Plant Arch. 17(2), 1383–1387 (2017).


    Google Scholar
     

  • Chen, K. & Arora, R. Priming memory invokes seed stress- tolerance. Environ. Exp. Bot. 94, 33–45. https://doi.org/10.1016/j.envexpbot.2012.03.005 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Tamilmani, U. Studies on effect of various seed management practices on quality seed production in greengram (Vigna radiata L.) cv. ADT 3 under abiotic stress condition. M.Sc. (Ag.) Thesis, Annamalai University, Annamalainagar (2012).

  • Prakash, M., Pallavamallan, S., Sathiyanarayanan, G. & Rameshkumar, S. Effect of seed pelleting with botanicals on germination and seedling growth of cluster bean under induced saline condition. Legume Res. Int. J. 44(1), 88–93 (2021).


    Google Scholar
     

  • Hussein, M. H., Eltanahy, E., Al Bakry, A. F., Elsafty, N. & Elshamy, M. M. Seaweed extracts as prospective plant growth bio-stimulant and salinity stress alleviator for Vigna sinensis and Zea mays. J. Appl. Phycol. 33(2), 1273–91 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hamouda, M. M., Saad-Allah, K. M. & Gad, D. Potential of seaweed extract on growth, physiological, cytological and biochemical parameters of wheat (Triticum aestivum L.) seedlings. J. Soil Sci. Plant Nutr. 22(2), 1818–1831. https://doi.org/10.1007/s42729-022-00774-3 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Narayanan, G. S., Prakash, M. & Reka, M. Influence of seed hardening treatments on growth, gas exchange and yield parameters in black gram under drought condition. Legume Res. Int. J. 39(2), 248–255. https://doi.org/10.18805/lr.v0iOF.7480 (2016).

    Article 

    Google Scholar
     

  • Mukasa, Y. et al. Accumulation of soluble sugar in true seeds by priming of sugar beet seeds and the effects of priming on growth and yield of drilled plants. Plant Prod. Sci. 6(1), 74–82. https://doi.org/10.1626/pps.6.74 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Hussain, S., Khan, F., Hussain, H. A. & Nie, L. Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front Plant Sci. 7, 116. https://doi.org/10.3389/fpls.2016.00116 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma, P., Gautam, A., Kumar, V. & Guleria, P. MgO nanoparticles priming promoted the growth of black chickpea. J. Agric. Food Res. 10, 2666–1543. https://doi.org/10.1016/j.jafr.2022.100435 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Saadat, H., Sedghi, M., Seyed Sharifi, R. & Farzaneh, S. Evaluation of gibberellin synthesis genes (ga3ox) expression and antioxidant capacity in common bean (Phaseolus vulgaris L. cv. Sadri) seeds induced by chitosan under salinity. Iran. J. Plant Physiol. 13(4), 4715–4728. https://doi.org/10.30495/ijpp.2023.1978837.1460 (2023).

    Article 

    Google Scholar
     

  • Bailly, C., Bogatek-Leszczynska, R., Côme, D. & Corbineau, F. Changes in activities of antioxidant enzymes and lipoxygenase during growth of sunflower seedlings from seeds of different vigour. Seed Sci. Res. 12(01), 47–55. https://doi.org/10.1079/SSR200197 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Ramana, T. & Radhakrishnan, T. M. De novo synthesis of protease during germination of pearl millet seeds. Curr. Sci. 59, 347–400 (1987).


    Google Scholar
     

  • Gepstin, S. & Han, I. Evidence for the involvement of cytokinin in the regulation of proteolytic activity in cotyledons of germinating beans. Plant Cell Physiol. 21(1), 57–63. https://doi.org/10.1093/oxfordjournals.pcp.a075990 (1980).

    Article 

    Google Scholar
     

  • Robert, K. M. et al. Harper’s illustrated biochemistry. Biologic Oxidation 12, 99–100 (2009).


    Google Scholar
     

  • França-Neto, J. D. B. & Krzyzanowski, F. C. Tetrazolium: An important test for physiological seed quality evaluation. J. Seed Sci. 41(3), 359–366. https://doi.org/10.1590/2317-1545v41n3223104 (2019).

    Article 

    Google Scholar
     

  • Pandey, P., Bhanuprakash, K. & Umesha,. Effect of seed priming on biochemical changes in fresh and aged seeds of cucumber. J. Agril. Studies 5(3), 62. https://doi.org/10.5296/jas.v5i3.11637 (2017).

    Article 

    Google Scholar
     

  • Arun, M. N., Bhanuprakash, K., Hebbar, S. S. & Senthivel, T. Effects of seed priming on biochemical parameters and seed germination in cowpea [Vigna unguiculata (L.) Walp]. Legume Res. Int. J. 40(3), 562–570. https://doi.org/10.18805/lr.v0i0.7857 (2017).

    Article 

    Google Scholar
     

  • Karmakar, A. et al. RNAi-mediated silencing of ITPK gene reduces phytic acid content, alters 27 transcripts of phytic acid biosynthetic genes, and modulates mineral distribution in rice seeds. Rice Sci. 27, 315–328 (2020).

    Article 

    Google Scholar
     

  • Tiwari, B. K. & Singh, N. Pulse Chemistry and Technology (RSC Publishing, 2012).

    Book 

    Google Scholar
     

  • Shi, H., Bressan, R., Hasegawa, P. M. & Zhu, J. K. In Sodium in Plant Nutritional Genomics (eds Broadlay, M. & White, P.) 127–149 (Blackwell Publishing, 2005).


    Google Scholar
     

  • Sung, H. G. et al. Effect of germination temperature on characteristics of phytase production from barley. Bioresour. Technol. 96(11), 1297–1303. https://doi.org/10.1016/j.biortech.2004.10.010 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kikunaga, S., Katoh, Y. & Takahashi, M. Biochemical changes in phosphorus compounds and in the activity of phytase and a-amylase in the rice (Oryza sativa) grain during germination. J. Sci. Food Agric. 56, 335–343. https://doi.org/10.1002/jsfa.2740560309 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Greiner, R. Purification and characterization of three phytases from germinated lupine seeds (Lupinus albus Var. Amiga). J. Agric. Food Chem. 50, 6858–6864. https://doi.org/10.1021/jf025619u (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prazeres, J. N., Ferreira, C. V. & Aoyama, H. Acid phosphatase activities during the germination of Glycine max seeds. Plant Physiol. Biochem. 42, 15–20. https://doi.org/10.1016/j.plaphy.2003.10.009 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bartnik, M. & Szafrańska, I. Changes in phytate content and phytase activity during the germination of some cereals. J. Cereal Sci. 5(1), 23–28. https://doi.org/10.1016/S0733-5210(87)80005-X (1987).

    Article 
    CAS 

    Google Scholar
     

  • Mconald, M. B. Orthodox seed deterioration and its repair. In Handbook of Seed Physiology: Applications to Agriculture (eds Sanchez, R. A. & Benech-Arnold, R. L.) 273–304 (Food Products Press, 2004).


    Google Scholar
     

  • Bhardwaj, J., Anand, A., Pandita, V. K. & Nagarajan, S. Pulsed magnetic field improves seed quality of aged green pea seeds by homeostasis of free radical content. J. Food Sci. Tech. 53, 3969–3977 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bailly, C. Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 14, 93–107. https://doi.org/10.1079/SSR2004159 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Vioque, J. et al. Purification and partial characterization of chickpea 2S albumin. J. Agric. Food Chem. 47(4), 1405–1409. https://doi.org/10.1021/jf980819k (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shewry, P. R. & Halford, N. G. Cereals seed storage proteins, structures, properties and role in grain utilization. J. Expert. Bot. 53, 947–958. https://doi.org/10.1093/jexbot/53.370.947 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Rocha, T. S. et al. Germination of Phaseolus vulgaris and alcalase hydrolysis of its proteins produced bioactive peptides capable of improving markers related to type-2 diabetes in vitro. Food Res. Int. 76(1), 150–159. https://doi.org/10.1016/j.foodres.2015.04.041 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Acharya, P., Jayaprakasha, G. K., Crosby, K. M., Jifon, J. L. & Patil, B. S. Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Sci. Rep. 10, 5037. https://doi.org/10.1038/s41598-020-61696-7 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srimathi, S., Gokulakrishnan, J. & Prakash, M. Effect of seed priming with botanical leaf extracts on seed quality and yield of maize hybrid COH (M) 4. J. Res ANGRAU 49, 37–44 (2021).


    Google Scholar
     

  • Basra, S. M., Farooq, M., Wahid, A. & Khan, M. B. Rice seed invigoration by hormonal and vitamin priming. Seed Sci. Tech. 34(3), 753–7. https://doi.org/10.15258/sst.2006.34.3.23 (2006).

    Article 

    Google Scholar
     

  • Devi, K., Barua, P. & Meghali, B. Integrated effect of pre-sowing seed treatment, sowing windows and seasons on seed yield and quality of greengram. Legume Res. Int. J. https://doi.org/10.18805/LR-4174 (2019).

    Article 

    Google Scholar
     

  • Muhammad, U. et al. Effects of neem (Azadirachta indica) seed and turmeric (Curcuma longa) rhizome extracts on aphids control, plant growth and yield in okra. J. Appl. Bot. Food Qual. 91, 194–201. https://doi.org/10.5073/JABFQ.2018.091.026 (2018).

    Article 

    Google Scholar
     

  • Rajani, K. et al. Physiological and biochemical assesement of chickpea and lentil grown in different agroclimatic zones of Bihar. Curr. J. Appl. Sci. Technol. 39(10), 68–78. https://doi.org/10.9734/cjast/2020/v39i1030629 (2020).

    Article 

    Google Scholar
     

  • Abdul-Baki, A. A. & Anderson, J. D. Vigor determination in soybean seed by multiple criteria. Crop Sci. 13(6), 630–633. https://doi.org/10.2135/cropsci1973.0011183X001300060013x (1973).

    Article 

    Google Scholar
     

  • Bernfeld, P. Amylases α and β. In Methods in enzymology (eds Colowick, S. P. & Kaplan, N. O.) (Academic, 1955).


    Google Scholar
     

  • Anson, M. L. The estimation of pepsin, trypsin, papain, and cathepsin with haemoglobin. J. Gen. Physiol. 22(1), 79–89. https://doi.org/10.1085/jgp.22.1.79 (1938).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kittock, D. L. & Law, A. G. Relationship of seedling vigour to respiration and tetrazolium reduction in germinating wheat seeds. Agronomy J. 60(3), 268–288. https://doi.org/10.2134/agronj1968.00021962006000030012x (1968).

    Article 

    Google Scholar
     

  • Azeke, M. A., Egielewa, S. J., Eigbogbo, M. U. & Ihimire, I. G. Effect of germination on the phytase activity, phytate and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum bicolor) and wheat (Triticum aestivum). J. Food Sci. Tech. 48(6), 724–9. https://doi.org/10.1007/s13197-010-0186-y (2011).

    Article 
    CAS 

    Google Scholar
     

  • Hodges, D. M., DeLong, J. M., Forney, C. F. & Prange, R. K. Improving the thiobarbituric acid reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611. https://doi.org/10.1007/s004250050524 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193(1), 265–75. https://doi.org/10.1016/S0021-9258(19)52451-6 (1951).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Osborne, T. B. The Vegetable Proteins 2nd edn. (Longmans, Green and Co, 1924).


    Google Scholar
     

  • Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685. https://doi.org/10.1038/227680a0 (1970).

    Article 
    CAS 
    PubMed 

    Google Scholar