Agrawal, T. et al. Correlation and path coefficient analysis for grain yield and yield components in chickpea (Cicer arietinum L.) under normal and late sown conditions of Bihar. Int. J. Curr. Microbiol. Appl. Sci. 7(2), 1633–1642. https://doi.org/10.20546/ijcmas.2018.702.197 (2018).
Krishnamurthy, L., Johansen, C. & Sethi, S. C. Investigation of factors determining genotypic differences in seed yield of non-irrigated and irrigated chickpeas using a physiological model of yield determination. J. Agron. Crop Sci. 183(1), 9–17. https://doi.org/10.1046/j.1439-037x.1999.00306.x (1999).
Srinivasan, A., Johansen, C. & Saxena, N. P. Cold International Journal of Current Microbiology and Applied Science tolerance during early reproductive growth of chickpea (Cicer arietinum L.) characterization of stress and genotypic variation in pod set. Field Crops Res. 57, 181–193. https://doi.org/10.1016/S0378-4290(97)00118-4 (1998).
Jame, Y. W. & Cutforth, H. W. Simulating the effects of temperature and seeding depth on germination and emergence of spring wheat. Agric. Meteorol. 124(3–4), 207–218. https://doi.org/10.1016/j.agrformet.2004.01.012 (2004).
Farooq, M., Basra, S. M. A., Ahmad, N. & Hafeez, K. Thermal hardening: A new seed vigour enhancement tool in rice. J. Integr. Plant Biol. 47(2), 187–193. https://doi.org/10.1111/j.1744-7909.2005.00031.x (2005).
Farooq, M., Aziz, T., Wahid, A., Lee, D. J. & Siddique, K. H. Chilling tolerance in maize: Agronomic and physiological applications. Crop Pasture Sci. 60(6), 501–516. https://doi.org/10.1071/CP08427 (2009).
Taylor, A.G., Thomas, B.D.J. & Murphy, B.G. Seed treatments, in: Encyclopedia of Applied Plant Science pp.1291–1298, https://doi.org/10.1016/B0-12-227050-9/00049-1 (2003).
Heydecker, W. & Gibbins, B. M. The “priming” of seeds. Sympos. Seed Problems Horticult. 83, 213–224. https://doi.org/10.17660/ActaHortic.1978.83.29 (1977).
Farooq, M., Basra, S. M., Wahid, A. & Ahmad, N. Changes in nutrient-homeostasis and reserves metabolism during rice seed priming: consequences for seedling emergence and growth. Agril. Sci. China 9(2), 191–198. https://doi.org/10.1016/S1671-2927(09)60083-3 (2010).
Kaur, S., Gupta, A. K. & Kaur, N. Seed priming increases crop yield possibly by modulating enzymes of sucrose metabolism in chickpea. J. Agron. Crop Sci. 191(2), 81–87. https://doi.org/10.1111/j.1439-037X.2004.00140.x (2005).
Karunagaran, D. & Rao, P. R. Mode and control of starch mobilization during germination of seeds of horse gram. Plant Sci. 73(2), 155–159. https://doi.org/10.1016/0168-9452(91)90023-2 (1991).
Tan-Wilson, A. L. & Wilson, K. A. Mobilization of seed protein reserves. Physiol. Plant 145(1), 140–53. https://doi.org/10.1111/j.1399-3054.2011.01535.x (2012).
Oaikhena, E. E., Ajibade, G. A., Appah, J. & Bello, M. Dehydrogenase enzyme activities in germinating cowpea (Vigna unguiculata (L)Walp). J. Biol. Agric. Healthc. 3(20), 32–36 (2013).
Oberleas, D. The determination of phytate and inositol phosphates. Methods Biochem. Anal. https://doi.org/10.1002/9780470110393 (1971).
Yamamoto, Y., Kobayashi, Y. & Matsumoto, H. Lipid peroxidation is an early symptom triggered by aluminium but not the primary cause of elongation inhibition in pea roots. Plant Physiol. 125(1), 199–208. https://doi.org/10.1104/pp.125.1.199 (2001).
Jambunathan, R. Distribution of seed protein fractions and amino acids in different anatomical parts of chickpea (Cicer arietinum L.) and pigeon pea (Cajanus cajan L.). Plant Foods Hum. Nutr. 32, 347–54. https://doi.org/10.1007/BF01094046 (1982).
Hatice, S., Duygu, S., Tuba, E., Zeybek, A. & Toker, C. Effect of seed priming on germination of relict beautiful (Vavilovia Formosa). Al. Fed. Mediterranean Agril. Sci. 34(1), 101–108. https://doi.org/10.29136/mediterranean.785458 (2021).
Osborne, T.B. The proteins of the wheat kernel. Carnegie Institution of Washington, Publication no. 84, Judd & Detweiler. Inc., Washington, DC (1907).
Gunasekar, J., Kamaraj, A. & Padmavathi, S. Effect of botanical seed priming on seed quality characters in black gram (vigna mungo L.) Hepper cv. CO6. Plant Arch. 17(2), 1383–1387 (2017).
Chen, K. & Arora, R. Priming memory invokes seed stress- tolerance. Environ. Exp. Bot. 94, 33–45. https://doi.org/10.1016/j.envexpbot.2012.03.005 (2013).
Tamilmani, U. Studies on effect of various seed management practices on quality seed production in greengram (Vigna radiata L.) cv. ADT 3 under abiotic stress condition. M.Sc. (Ag.) Thesis, Annamalai University, Annamalainagar (2012).
Prakash, M., Pallavamallan, S., Sathiyanarayanan, G. & Rameshkumar, S. Effect of seed pelleting with botanicals on germination and seedling growth of cluster bean under induced saline condition. Legume Res. Int. J. 44(1), 88–93 (2021).
Hussein, M. H., Eltanahy, E., Al Bakry, A. F., Elsafty, N. & Elshamy, M. M. Seaweed extracts as prospective plant growth bio-stimulant and salinity stress alleviator for Vigna sinensis and Zea mays. J. Appl. Phycol. 33(2), 1273–91 (2021).
Hamouda, M. M., Saad-Allah, K. M. & Gad, D. Potential of seaweed extract on growth, physiological, cytological and biochemical parameters of wheat (Triticum aestivum L.) seedlings. J. Soil Sci. Plant Nutr. 22(2), 1818–1831. https://doi.org/10.1007/s42729-022-00774-3 (2022).
Narayanan, G. S., Prakash, M. & Reka, M. Influence of seed hardening treatments on growth, gas exchange and yield parameters in black gram under drought condition. Legume Res. Int. J. 39(2), 248–255. https://doi.org/10.18805/lr.v0iOF.7480 (2016).
Mukasa, Y. et al. Accumulation of soluble sugar in true seeds by priming of sugar beet seeds and the effects of priming on growth and yield of drilled plants. Plant Prod. Sci. 6(1), 74–82. https://doi.org/10.1626/pps.6.74 (2003).
Hussain, S., Khan, F., Hussain, H. A. & Nie, L. Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front Plant Sci. 7, 116. https://doi.org/10.3389/fpls.2016.00116 (2016).
Sharma, P., Gautam, A., Kumar, V. & Guleria, P. MgO nanoparticles priming promoted the growth of black chickpea. J. Agric. Food Res. 10, 2666–1543. https://doi.org/10.1016/j.jafr.2022.100435 (2022).
Saadat, H., Sedghi, M., Seyed Sharifi, R. & Farzaneh, S. Evaluation of gibberellin synthesis genes (ga3ox) expression and antioxidant capacity in common bean (Phaseolus vulgaris L. cv. Sadri) seeds induced by chitosan under salinity. Iran. J. Plant Physiol. 13(4), 4715–4728. https://doi.org/10.30495/ijpp.2023.1978837.1460 (2023).
Bailly, C., Bogatek-Leszczynska, R., Côme, D. & Corbineau, F. Changes in activities of antioxidant enzymes and lipoxygenase during growth of sunflower seedlings from seeds of different vigour. Seed Sci. Res. 12(01), 47–55. https://doi.org/10.1079/SSR200197 (2002).
Ramana, T. & Radhakrishnan, T. M. De novo synthesis of protease during germination of pearl millet seeds. Curr. Sci. 59, 347–400 (1987).
Gepstin, S. & Han, I. Evidence for the involvement of cytokinin in the regulation of proteolytic activity in cotyledons of germinating beans. Plant Cell Physiol. 21(1), 57–63. https://doi.org/10.1093/oxfordjournals.pcp.a075990 (1980).
Robert, K. M. et al. Harper’s illustrated biochemistry. Biologic Oxidation 12, 99–100 (2009).
França-Neto, J. D. B. & Krzyzanowski, F. C. Tetrazolium: An important test for physiological seed quality evaluation. J. Seed Sci. 41(3), 359–366. https://doi.org/10.1590/2317-1545v41n3223104 (2019).
Pandey, P., Bhanuprakash, K. & Umesha,. Effect of seed priming on biochemical changes in fresh and aged seeds of cucumber. J. Agril. Studies 5(3), 62. https://doi.org/10.5296/jas.v5i3.11637 (2017).
Arun, M. N., Bhanuprakash, K., Hebbar, S. S. & Senthivel, T. Effects of seed priming on biochemical parameters and seed germination in cowpea [Vigna unguiculata (L.) Walp]. Legume Res. Int. J. 40(3), 562–570. https://doi.org/10.18805/lr.v0i0.7857 (2017).
Karmakar, A. et al. RNAi-mediated silencing of ITPK gene reduces phytic acid content, alters 27 transcripts of phytic acid biosynthetic genes, and modulates mineral distribution in rice seeds. Rice Sci. 27, 315–328 (2020).
Tiwari, B. K. & Singh, N. Pulse Chemistry and Technology (RSC Publishing, 2012).
Shi, H., Bressan, R., Hasegawa, P. M. & Zhu, J. K. In Sodium in Plant Nutritional Genomics (eds Broadlay, M. & White, P.) 127–149 (Blackwell Publishing, 2005).
Sung, H. G. et al. Effect of germination temperature on characteristics of phytase production from barley. Bioresour. Technol. 96(11), 1297–1303. https://doi.org/10.1016/j.biortech.2004.10.010 (2005).
Kikunaga, S., Katoh, Y. & Takahashi, M. Biochemical changes in phosphorus compounds and in the activity of phytase and a-amylase in the rice (Oryza sativa) grain during germination. J. Sci. Food Agric. 56, 335–343. https://doi.org/10.1002/jsfa.2740560309 (1991).
Greiner, R. Purification and characterization of three phytases from germinated lupine seeds (Lupinus albus Var. Amiga). J. Agric. Food Chem. 50, 6858–6864. https://doi.org/10.1021/jf025619u (2002).
Prazeres, J. N., Ferreira, C. V. & Aoyama, H. Acid phosphatase activities during the germination of Glycine max seeds. Plant Physiol. Biochem. 42, 15–20. https://doi.org/10.1016/j.plaphy.2003.10.009 (2004).
Bartnik, M. & Szafrańska, I. Changes in phytate content and phytase activity during the germination of some cereals. J. Cereal Sci. 5(1), 23–28. https://doi.org/10.1016/S0733-5210(87)80005-X (1987).
Mconald, M. B. Orthodox seed deterioration and its repair. In Handbook of Seed Physiology: Applications to Agriculture (eds Sanchez, R. A. & Benech-Arnold, R. L.) 273–304 (Food Products Press, 2004).
Bhardwaj, J., Anand, A., Pandita, V. K. & Nagarajan, S. Pulsed magnetic field improves seed quality of aged green pea seeds by homeostasis of free radical content. J. Food Sci. Tech. 53, 3969–3977 (2016).
Bailly, C. Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 14, 93–107. https://doi.org/10.1079/SSR2004159 (2004).
Vioque, J. et al. Purification and partial characterization of chickpea 2S albumin. J. Agric. Food Chem. 47(4), 1405–1409. https://doi.org/10.1021/jf980819k (1999).
Shewry, P. R. & Halford, N. G. Cereals seed storage proteins, structures, properties and role in grain utilization. J. Expert. Bot. 53, 947–958. https://doi.org/10.1093/jexbot/53.370.947 (2002).
Rocha, T. S. et al. Germination of Phaseolus vulgaris and alcalase hydrolysis of its proteins produced bioactive peptides capable of improving markers related to type-2 diabetes in vitro. Food Res. Int. 76(1), 150–159. https://doi.org/10.1016/j.foodres.2015.04.041 (2015).
Acharya, P., Jayaprakasha, G. K., Crosby, K. M., Jifon, J. L. & Patil, B. S. Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Sci. Rep. 10, 5037. https://doi.org/10.1038/s41598-020-61696-7 (2020).
Srimathi, S., Gokulakrishnan, J. & Prakash, M. Effect of seed priming with botanical leaf extracts on seed quality and yield of maize hybrid COH (M) 4. J. Res ANGRAU 49, 37–44 (2021).
Basra, S. M., Farooq, M., Wahid, A. & Khan, M. B. Rice seed invigoration by hormonal and vitamin priming. Seed Sci. Tech. 34(3), 753–7. https://doi.org/10.15258/sst.2006.34.3.23 (2006).
Devi, K., Barua, P. & Meghali, B. Integrated effect of pre-sowing seed treatment, sowing windows and seasons on seed yield and quality of greengram. Legume Res. Int. J. https://doi.org/10.18805/LR-4174 (2019).
Muhammad, U. et al. Effects of neem (Azadirachta indica) seed and turmeric (Curcuma longa) rhizome extracts on aphids control, plant growth and yield in okra. J. Appl. Bot. Food Qual. 91, 194–201. https://doi.org/10.5073/JABFQ.2018.091.026 (2018).
Rajani, K. et al. Physiological and biochemical assesement of chickpea and lentil grown in different agroclimatic zones of Bihar. Curr. J. Appl. Sci. Technol. 39(10), 68–78. https://doi.org/10.9734/cjast/2020/v39i1030629 (2020).
Abdul-Baki, A. A. & Anderson, J. D. Vigor determination in soybean seed by multiple criteria. Crop Sci. 13(6), 630–633. https://doi.org/10.2135/cropsci1973.0011183X001300060013x (1973).
Bernfeld, P. Amylases α and β. In Methods in enzymology (eds Colowick, S. P. & Kaplan, N. O.) (Academic, 1955).
Anson, M. L. The estimation of pepsin, trypsin, papain, and cathepsin with haemoglobin. J. Gen. Physiol. 22(1), 79–89. https://doi.org/10.1085/jgp.22.1.79 (1938).
Kittock, D. L. & Law, A. G. Relationship of seedling vigour to respiration and tetrazolium reduction in germinating wheat seeds. Agronomy J. 60(3), 268–288. https://doi.org/10.2134/agronj1968.00021962006000030012x (1968).
Azeke, M. A., Egielewa, S. J., Eigbogbo, M. U. & Ihimire, I. G. Effect of germination on the phytase activity, phytate and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum bicolor) and wheat (Triticum aestivum). J. Food Sci. Tech. 48(6), 724–9. https://doi.org/10.1007/s13197-010-0186-y (2011).
Hodges, D. M., DeLong, J. M., Forney, C. F. & Prange, R. K. Improving the thiobarbituric acid reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611. https://doi.org/10.1007/s004250050524 (1999).
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193(1), 265–75. https://doi.org/10.1016/S0021-9258(19)52451-6 (1951).
Osborne, T. B. The Vegetable Proteins 2nd edn. (Longmans, Green and Co, 1924).
Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685. https://doi.org/10.1038/227680a0 (1970).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-59878-8