Search
Close this search box.

Photocatalytic, antimicrobial and antibiofilm activities of MgFe2O4 magnetic nanoparticles – Scientific Reports

  • Song, Y. et al. Porous materials for water purification. Angew. Chem. Int. Ed. 62(11), e202216724 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tian, M. et al. Pollution by antibiotics and antimicrobial resistance in livestock and poultry manure in China, and countermeasures. Antibiotics 10(5), 539 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shirzadi-Ahodashti, M. et al. Discovery of high antibacterial and catalytic activities against multi-drug resistant clinical bacteria and hazardous pollutants by biosynthesized of silver nanoparticles using Stachys inflata extract (AgNPs@SI). Colloids Surf., A 617, 126383 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Water, U. N. Sustainable Development Goal 6 synthesis report on water and sanitation 10017 (Published by the United Nations New York, 2018).


    Google Scholar
     

  • Lin, L., Yang, H. & Xu, X. Effects of water pollution on human health and disease heterogeneity: A review. Front. Environ. Sci. 10, 880246 (2022).

    Article 

    Google Scholar
     

  • Manikandan, S. et al. A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes. Chemosphere 289, 132867 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khormali, K. et al. Novel Dy2O3/ZnO-Au ternary nanocomposites: Green synthesis using pomegranate fruit extract, characterization and their photocatalytic and antibacterial properties. Bioorg. Chem. 115, 105204 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sahu, B. and L. Chopra. A review on removal of toxic colorants from the industrial effluent via advanced metal oxide semiconductor. AIP Publishing.

  • Abu-Zurayk, R. et al. Photodegradation of Carbol fuchsin dye using an Fe2−xCuxZr2−xWxO7 photocatalyst under visible-light irradiation. Catalysts 11, 1473 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Guzmán, M. G., Dille, J. & Godet, S. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biomol Eng 2(3), 104–111 (2009).


    Google Scholar
     

  • Pantidos, N. & Horsfall, L. E. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J. Nanomed. Nanotechnol. 5(5), 1 (2014).

    Article 

    Google Scholar
     

  • Zhao, C. et al. Application of coagulation/flocculation in oily wastewater treatment: A review. Sci. Total Environ. 765, 142795 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Culp, G., Hansen, S. & Richardson, G. High-rate sedimentation in water treatment works. J. –Am. Water Works Assoc. 60(6), 681–698 (1968).

    Article 

    Google Scholar
     

  • Hashemi, Z. et al. Sustainable biosynthesis of metallic silver nanoparticles using barberry phenolic extract: Optimization and evaluation of photocatalytic, in vitro cytotoxicity, and antibacterial activities against multidrug-resistant bacteria. Inorganic Chem. Commun. 139, 109320 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Evolutionary metal oxide clusters for novel applications: Toward high-density data storage in nonvolatile memories. Adv. Mater. 30(3), 1703950 (2018).

    Article 

    Google Scholar
     

  • Qu, X., Alvarez, P. J. & Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 47(12), 3931–3946 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cox, P. A. Transition metal oxides: an introduction to their electronic structure and properties (Oxford University Press, Oxford, 2010).


    Google Scholar
     

  • Hornyak, G. L. et al. Introduction to nanoscience (CRC Press, Boca Raton, 2008).

    Book 

    Google Scholar
     

  • Saha, I. et al. Role of nanotechnology in water treatment and purification: Potential applications and implications. Int. J. Chem. Sci. Technol. 3(3), 59–64 (2013).


    Google Scholar
     

  • Tahir, M. B. et al. Nanomaterials for Photocatalytic Applications, in Reference Module in Materials Science and Materials Engineering (Elsevier, Amsterdam, 2019).


    Google Scholar
     

  • Abd Elkodous, M. et al. Carbon-dot-loaded CoxNi1−xFe2O4; x = 0.9/SiO2/TiO2 nanocomposite with enhanced photocatalytic and antimicrobial potential: An engineered nanocomposite for wastewater treatment. Sci. Rep. 10(1), 11534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, A. Investigating the effects of environmental applications on decomposition of zein nanoparticles in adsorbents in industry. J. Eng. Indus. Res. 4(2), 92–108 (2023).


    Google Scholar
     

  • El-Batal, A. I. et al. Antimicrobial synergism and antibiofilm activity of amoxicillin loaded citric acid-magnesium ferrite nanocomposite: Effect of UV-illumination, and membrane leakage reaction mechanism. Mic. Patho. 164, 105440 (2022).

  • Abuzeyad, O. H. et al. An evaluation of the improved catalytic performance of rGO/GO-hybrid-nanomaterials in photocatalytic degradation and antibacterial activity processes for wastewater treatment: A review. J. Mol. Structure 1288, 135787 (2023).

  • Review on Antimicrobial, R. and T. Wellcome, Tackling Drug-Resistant Infections Globally : Final Report and Recommendations. 2016, [United Kingdom]: Review on Antimicrobial Resistance.

  • Wang, L., Hu, C. & Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ebrahimzadeh, M. A. et al. In vitro cytotoxicity against human cancer cell lines (MCF-7 and AGS), antileishmanial and antibacterial activities of green synthesized silver nanoparticles using Scrophularia striata extract. Surf. Interfaces 23, 100963 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lagashetty, A., Pattar, A. & Ganiger, S. K. Synthesis, characterization and antibacterial study of Ag doped magnesium ferrite nanocomposite. Heliyon 5(5), e01760 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nonkumwong, J. et al. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles. Mater. Sci. Eng.: C 61, 123–132 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wu, W., He, Q. & Jiang, C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3(11), 397–415 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Sayyad, G. S., Mosallam, F. M. & El-Batal, A. I. One-pot green synthesis of magnesium oxide nanoparticles using Penicillium chrysogenum melanin pigment and gamma rays with antimicrobial activity against multidrug-resistant microbes. Adv. Powder Technol. 29(11), 2616–2625 (2018).

    Article 
    CAS 

    Google Scholar
     

  • El-Batal, A. et al. Synthesis of silver nanoparticles and incorporation with certain antibiotic using gamma irradiation. British J. Pharm. Res. 4(11), 1341–1363 (2014).

    Article 

    Google Scholar
     

  • Kaur, N. & Kaur, M. Comparative studies on impact of synthesis methods on structural and magnetic properties of magnesium ferrite nanoparticles. Process. Appl. Ceram. 8(3), 137–143 (2014).

    Article 

    Google Scholar
     

  • El-Khawaga, A. M. et al. Promising antimicrobial and azo dye removal activities of citric acid-functionalized magnesium ferrite nanoparticles. J. Cluster Sci. 33(1), 197–213 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Martienssen, W. & Warlimont, H. Springer Handbook of Condensed Matter and Materials Data Vol. 1 (Springer, Berlin-Heidelberg, 2005).

    Book 

    Google Scholar
     

  • Halarnekar, D. et al. Eco synthesized chitosan/zinc oxide nanocomposites as the next generation of nano-delivery for antibacterial, antioxidant, antidiabetic potential, and chronic wound repair. Int. J. Biol. Macromol. 242, 124764 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fei, P. et al. Antimicrobial activity and mechanism of action of olive oil polyphenols extract against Cronobacter sakazakii. Food Control 94, 289–294 (2018).

    Article 
    CAS 

    Google Scholar
     

  • El-Khawaga, A. M. et al. Promising photocatalytic and antimicrobial activity of novel capsaicin coated cobalt ferrite nanocatalyst. Sci. Rep. 13(1), 5353 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, A. et al. Antimicrobial susceptibility testing for enterococci. J. Clin. Microbiol. 60(9), e0084321 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Matouskova, P. et al. Effect of encapsulation on antimicrobial activity of herbal extracts with lysozyme. Food Technol. Biotechnol. 54(3), 304–316 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christensen, G. D., Simpson, W. A., Bisno, A. L. & Beachey, E. H. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immunity 37(1), 318–326 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Kazemi, M., Ghobadi, M. & Mirzaie, A. Cobalt ferrite nanoparticles (CoFe2O4 MNPs) as catalyst and support: Magnetically recoverable nanocatalysts in organic synthesis. Nanotechnol. Rev. 7(1), 43–68 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Drevon, D. et al. Uncovering the role of oxygen in Ni-Fe(OxHy) electrocatalysts using in situ soft X-ray absorption spectroscopy during the oxygen evolution reaction. Sci. Rep. 9(1), 1532 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Sayyad, G. S. et al. Merits of photocatalytic and antimicrobial applications of gamma-irradiated Co x Ni 1–x Fe 2 O 4/SiO 2/TiO 2; x= 0.9 nanocomposite for pyridine removal and pathogenic bacteria/fungi disinfection: implication for wastewater treatment. RSC Adv. 10(9), 5241–5259 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gheidari, D. et al. Synthesis and potent antimicrobial activity of CoFe2O4 nanoparticles under visible light. Heliyon 6(10), e05058 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gingasu, D. et al. Green synthesis methods of CoFe 2 O 4 and Ag-CoFe 2 O 4 nanoparticles using hibiscus extracts and their antimicrobial potential. J. Nanomater. 2016, 1–12 (2016).

    Article 

    Google Scholar
     

  • Hathout, A. S. et al. Synthesis and characterization of cobalt ferrites nanoparticles with cytotoxic and antimicrobial properties. J. Appl. Pharm. Sci. 7(1), 086–092 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Høiby, N. et al. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 35(4), 322–332 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Dufour, D., Leung, V. & Lévesque, C. M. Bacterial biofilm: structure, function, and antimicrobial resistance. Endodontic Top. 22(1), 2–16 (2010).

    Article 

    Google Scholar
     

  • Avila-Novoa, M. G. et al. Genetic and compositional analysis of biofilm formed by Staphylococcus aureus isolated from food contact surfaces. Front. Microbiol. 13, 1001700 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whelan, S. et al. Uropathogenic Escherichia coli biofilm-forming capabilities are not predictable from clinical details or from colonial morphology. Diseases 8(2), 11 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elbasuney, S. et al. Antimicrobial, and antibiofilm activities of silver doped hydroxyapatite: A novel bioceramic material for dental filling. J. Inorganic Organometallic Polymers Mater. 32(12), 4559–4575 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Allafchian, A. et al. Preparation, characterization, and antibacterial activity of NiFe2O4/PAMA/Ag–TiO2 nanocomposite. J. Magn. Magn. Mater. 404, 14–20 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sanpo, N., Berndt, C. C. & Wang, J. Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol-gel methods. J. Appl. Phys. 112(8), 084333 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ehi-Eromosele, C. O. et al. Synthesis and evaluation of the antimicrobial potentials of cobalt doped-and magnesium ferrite spinel nanoparticles. Bull. Chem. Soc. Ethiopia 32(3), 451–458 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Maksoud, M. I. A. A. et al. Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microbial Pathog. 127, 144–158 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lagashetty, A., Pattar, A. & Ganiger, S. Synthesis, characterization and antibacterial study of Ag doped magnesium ferrite nanocomposite. Heliyon 5, e01760 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nigam, A. et al. Zinc doped magnesium ferrite nanoparticles for evaluation of biological properties viz antimicrobial, biocompatibility, and in vitro cytotoxicity. Mater. Today Commun. 31, 103632 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Vishwakarma, A. K. et al. Antibacterial activity of PANI coated CoFe2O4 nanocomposite for gram-positive and gram-negative bacterial strains. Mater. Today Commun. 31, 103229 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Maksoud, M. I. A. A. et al. Nanostructured Mg substituted Mn-Zn ferrites: A magnetic recyclable catalyst for outstanding photocatalytic and antimicrobial potentials. J. Hazard. Mater. 399, 123000 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Pathania, D. et al. Exploring phytochemical composition, photocatalytic, antibacterial, and antifungal efficacies of Au NPs supported by Cymbopogon flexuosus essential oil. Sci. Rep. 12(1), 14249 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaudhary, V., Mostafavi, E. & Kaushik, A. De-coding Ag as an efficient antimicrobial nano-system for controlling cellular/biological functions. Matter 5(7), 1995–1998 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Khairnar, S. D. et al. Synthesis and characterization of 2-D La-doped Bi2O3 for photocatalytic degradation of organic dye and pesticide. J. Photochem. Photobiol. 6, 100030 (2021).

    Article 

    Google Scholar
     

  • Shah, Z. H. et al. Visible light activation of SrTiO3 by loading Ag/AgX (Xá= áCl, Br) for highly efficient plasmon-enhanced photocatalysis. Mater. Chem. Phys. 198, 73–82 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mahmoodi, N. M. Photocatalytic ozonation of dyes using copper ferrite nanoparticle prepared by co-precipitation method. Desalination 279(1–3), 332–337 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Gao, H., Yang, H. & Wang, S. Hydrothermal synthesis, growth mechanism, optical properties and photocatalytic activity of cubic SrTiO3 particles for the degradation of cationic and anionic dyes. Optik 175, 237–249 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ollis, D. F. Kinetics of photocatalyzed reactions: five lessons learned. Frontiers in chemistry 6, 378 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miranda, M. O. et al. Photocatalytic degradation of ibuprofen using titanium oxide: insights into the mechanism and preferential attack of radicals. RSC Adv. 11(44), 27720–27733 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abuzeyad, O. H. et al. Merits of photocatalytic activity of synthesized (ZnxCu(1–x)Fe2O4); x = (0–1) magnetic nanoparticles for wastewater treatment. J. Mater. Sci. 59(10), 4152–4166 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Malefane, M. E., Feleni, U. & Kuvarega, A. T. Cobalt (II/III) oxide and tungsten (VI) oxide pn heterojunction photocatalyst for photodegradation of diclofenac sodium under visible light. J. Environ. Chem. Eng. 8(2), 103560 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, D. et al. Photocatalytic degradation of organic dye and phytohormone by a Cu (II) complex powder catalyst with added H2O2. Colloids Surf. A 603, 125147 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Harikishore, M. et al. Effect of Ag doping on antibacterial and photocatalytic activity of nanocrystalline TiO2. Procedia Mater. Sci. 6, 557–566 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Fouladi-Fard, R. et al. The surface modification of spherical ZnO with Ag nanoparticles: A novel agent, biogenic synthesis, catalytic and antibacterial activities. Arab. J. Chem. 15(3), 103658 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Velayati, M. et al. Green-based biosynthesis of Se nanorods in chitosan and assessment of their photocatalytic and cytotoxicity effects. Environ. Technol. Innov. 27, 102610 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dom, R. et al. Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation. Solid State Commun. 151(6), 470–473 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, K. et al. Photocatalytic degradation of methylene blue on magnetically separable FePc/Fe3O4 nanocomposite under visible irradiation. Pure Appl. Chem. 81(12), 2327–2335 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Abu-Zurayk, R. et al. Photodegradation of Carbol fuchsin dye using an Fe2−xCuxZr2−xWxO7 photocatalyst under visible-light irradiation. Catalysts 11(12), 1473 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, H. et al. An efficient construction method of S-scheme Ag2CrO4/ZnFe2O4 nanofibers heterojunction toward enhanced photocatalytic and antibacterial activity. Colloids Surf. A: Physicochem. Eng. Aspects 641, 128603 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Naik, M. M. et al. Multifunctional properties of microwave-assisted bioengineered nickel doped cobalt ferrite nanoparticles. J. Sol-Gel Sci. Technol. 91, 578–595 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ahmadzadeh, M. et al. Assessment of the photocatalytic performance and cytotoxic effects of barium sulfate nanoparticles synthesized with a one-step hydrothermal method. Inorganic Chem. Commun. 160, 111904 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Mohandes, A. et al. Biosynthesis of cobalt oxide nanoparticles (Co3O4-NPs) using Caccinia macranthera extract and evaluation of their cytotoxicity and photocatalytic activity. Mater. Sci. Eng.: B 297, 116782 (2023).

    Article 
    CAS 

    Google Scholar