Past, present, and future of cell replacement therapy for parkinson’s disease: a novel emphasis on host immune responses – Cell Research

  • Fahn, S. The 200-year journey of Parkinson disease: Reflecting on the past and looking towards the future. Parkinsonism Relat. Disord. 46, S1–S5 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet 386, 896–912 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Primers 3, 17013 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Obeso, J. A. et al. Missing pieces in the Parkinson’s disease puzzle. Nat. Med. 16, 653–661 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meissner, W. G. et al. Priorities in Parkinson’s disease research. Nat. Rev. Drug Discov. 10, 377–393 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barker, R. A., Barrett, J., Mason, S. L. & Bjorklund, A. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol. 12, 84–91 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sonntag, K. C. et al. Pluripotent stem cell-based therapy for Parkinson’s disease: Current status and future prospects. Prog. Neurobiol. 168, 1–20 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parmar, M., Grealish, S. & Henchcliffe, C. The future of stem cell therapies for Parkinson disease. Nat. Rev. Neurosci. 21, 103–115 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barker, R. A., Drouin-Ouellet, J. & Parmar, M. Cell-based therapies for Parkinson disease-past insights and future potential. Nat. Rev. Neurol. 11, 492–503 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skidmore, S. & Barker, R. A. Challenges in the clinical advancement of cell therapies for Parkinson’s disease. Nat. Biomed. Eng. 7, 370–386 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cha, Y., Park, T. Y., Leblanc, P. & Kim, K. S. Current status and future perspectives on stem cell-based therapies for Parkinson’s disease. J. Mov. Disord. 16, 22–41 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindvall, O. Clinical translation of stem cell transplantation in Parkinson’s disease. J. Intern. Med. 279, 30–40 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. Y. & Li, W. Postmortem studies of fetal grafts in Parkinson’s Disease: What lessons have we learned? Front. Cell. Dev. Biol. 9, 666675 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindvall, O. et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247, 574–577 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Defer, G. L. et al. Long-term outcome of unilaterally transplanted parkinsonian patients. I. Clinical approach. Brain 119, 41–50 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Mendez, I. et al. Simultaneous intrastriatal and intranigral fetal dopaminergic grafts in patients with Parkinson disease: a pilot study. Report of three cases. J. Neurosurg. 96, 589–596 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Peschanski, M. et al. Bilateral motor improvement and alteration of L-dopa effect in two patients with Parkinson’s disease following intrastriatal transplantation of foetal ventral mesencephalon. Brain 117, 487–499 (1994).

    Article 
    PubMed 

    Google Scholar
     

  • Freed, C. R. et al. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N. Engl. J. Med. 327, 1549–1555 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Freeman, T. B. et al. Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson’s disease. Ann. Neurol. 38, 379–388 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hagell, P. et al. Sequential bilateral transplantation in Parkinson’s disease: Effects of the second graft. Brain 122, 1121–1132 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Kefalopoulou, Z. et al. Long-term clinical outcome of fetal cell transplantation for Parkinson disease: Two case reports. JAMA Neurol. 71, 83–87 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kordower, J. H. et al. Functional fetal nigral grafts in a patient with Parkinson’s disease: chemoanatomic, ultrastructural, and metabolic studies. J. Comp. Neurol. 370, 203–230 (1996).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/(SICI)1096-9861(19960624)370:23.0.CO;2-6″ data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291096-9861%2819960624%29370%3A2%3C203%3A%3AAID-CNE6%3E3.0.CO%3B2-6″ aria-label=”Article reference 22″ data-doi=”10.1002/(SICI)1096-9861(19960624)370:23.0.CO;2-6″>Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kordower, J. H. et al. Fetal nigral grafts survive and mediate clinical benefit in a patient with Parkinson’s disease. Mov. Disord. 13, 383–393 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindvall, O. et al. Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease. A detailed account of methodology and a 6-month follow-up. Arch. Neurol. 46, 615–631 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindvall, O. et al. Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann. Neurol. 35, 172–180 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindvall, O. et al. Transplantation of fetal dopamine neurons in Parkinson’s disease: one-year clinical and neurophysiological observations in two patients with putaminal implants. Ann. Neurol. 31, 155–165 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendez, I. et al. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain 128, 1498–1510 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Piccini, P. et al. Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat. Neurosci. 2, 1137–1140 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spencer, D. D. et al. Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson’s disease. N. Engl. J. Med. 327, 1541–1548 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wenning, G. K. et al. Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson’s disease. Ann. Neurol. 42, 95–107 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Widner, H. et al. Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). N. Engl. J. Med. 327, 1556–1563 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W. et al. Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. Proc. Natl. Acad. Sci. USA 113, 6544–6549 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B. & Olanow, C. W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat. Med. 14, 504–506 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendez, I. et al. Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat. Med. 14, 507–509 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greene, P. E. et al. Persistent dyskinesias in patients with fetal tissue transplantation for Parkinson disease. NPJ Parkinsons Dis. 7, 38 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freed, C. R. et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 344, 710–719 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olanow, C. W. et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann. Neurol. 54, 403–414 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Thompson, L. & Bjorklund, A. Survival, differentiation, and connectivity of ventral mesencephalic dopamine neurons following transplantation. Prog. Brain Res. 200, 61–95 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Ramachandran, A. C., Bartlett, L. E. & Mendez, I. M. A multiple target neural transplantation strategy for Parkinson’s disease. Rev. Neurosci. 13, 243–256 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Castilho, R. F., Hansson, O. & Brundin, P. Improving the survival of grafted embryonic dopamine neurons in rodent models of Parkinson’s disease. Prog. Brain Res. 127, 203–231 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bjorklund, A. & Kordower, J. H. Cell therapy for Parkinson’s disease: what next? Mov. Disord. 28, 110–115 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brundin, P. et al. Improving the survival of grafted dopaminergic neurons: a review over current approaches. Cell Transpl. 9, 179–195 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Brundin, P. et al. Human fetal dopamine neurons grafted in a rat model of Parkinson’s disease: immunological aspects, spontaneous and drug-induced behaviour, and dopamine release. Exp. Brain Res. 70, 192–208 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frodl, E. M., Duan, W. M., Sauer, H., Kupsch, A. & Brundin, P. Human embryonic dopamine neurons xenografted to the rat: effects of cryopreservation and varying regional source of donor cells on transplant survival, morphology and function. Brain Res. 647, 286–298 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barker, R. A., Dunnett, S. B., Faissner, A. & Fawcett, J. W. The time course of loss of dopaminergic neurons and the gliotic reaction surrounding grafts of embryonic mesencephalon to the striatum. Exp. Neurol. 141, 79–93 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, W. M., Widner, H. & Brundin, P. Temporal pattern of host responses against intrastriatal grafts of syngeneic, allogeneic or xenogeneic embryonic neuronal tissue in rats. Exp. Brain Res. 104, 227–242 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emgard, M., Karlsson, J., Hansson, O. & Brundin, P. Patterns of cell death and dopaminergic neuron survival in intrastriatal nigral grafts. Exp. Neurol. 160, 279–288 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wenker, S. D. & Pitossi, F. J. Cell therapy for Parkinson’s disease is coming of age: current challenges and future prospects with a focus on immunomodulation. Gene Ther. 27, 6–14 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zawada, W. M. et al. Growth factors improve immediate survival of embryonic dopamine neurons after transplantation into rats. Brain Res. 786, 96–103 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schierle, G. S. et al. Caspase inhibition reduces apoptosis and increases survival of nigral transplants. Nat. Med. 5, 97–100 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahalik, T. J., Hahn, W. E., Clayton, G. H. & Owens, G. P. Programmed cell death in developing grafts of fetal substantia nigra. Exp. Neurol. 129, 27–36 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, B. Y., Jenner, P. & Marsden, C. D. Altered motor function and graft survival produced by basic fibroblast growth factor in rats with 6-OHDA lesions and fetal ventral mesencephalic grafts are associated with glial proliferation. Exp. Neurol. 139, 214–226 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mayer, E., Fawcett, J. W. & Dunnett, S. B. Basic fibroblast growth factor promotes the survival of embryonic ventral mesencephalic dopaminergic neurons–II. Effects on nigral transplants in vivo. Neuroscience 56, 389–398 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takayama, H. et al. Basic fibroblast growth factor increases dopaminergic graft survival and function in a rat model of Parkinson’s disease. Nat. Med. 1, 53–58 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schierle, G. S. & Brundin, P. Excitotoxicity plays a role in the death of tyrosine hydroxylase- immunopositive nigral neurons cultured in serum-free medium. Exp. Neurol. 157, 338–348 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakao, N., Frodl, E. M., Duan, W. M., Widner, H. & Brundin, P. Lazaroids improve the survival of grafted rat embryonic dopamine neurons. Proc. Natl. Acad. Sci. USA 91, 12408–12412 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaminski Schierle, G. S., Hansson, O. & Brundin, P. Flunarizine improves the survival of grafted dopaminergic neurons. Neuroscience 94, 17–20 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schweitzer, J. S., Song, B. & Kim, K. S. A step closer to autologous cell therapy for Parkinson’s disease. Cell Stem Cell 28, 595–597 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merkle, F. T. et al. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature 545, 229–233 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schweitzer, J. S. et al. Personalized iPSC-Derived dopamine progenitor cells for parkinson’s disease. N. Engl. J. Med. 382, 1926–1932 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, A. S., Tang, C., Rao, M. S., Weissman, I. L. & Wu, J. C. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat. Med. 19, 998–1004 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamanaka, S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell 27, 523–531 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, M. O. et al. Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc. Natl. Acad. Sci. USA 110, E3281–E3290 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, B. et al. Human autologous iPSC-derived dopaminergic progenitors restore motor function in Parkinson’s disease models. J. Clin. Invest. 130, 904–920 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ostrom, Q. T. et al. The epidemiology of glioma in adults: a “state of the science” review. Neuro. Oncol. 16, 896–913 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lund, R. J., Narva, E. & Lahesmaa, R. Genetic and epigenetic stability of human pluripotent stem cells. Nat. Rev. Genet. 13, 732–744 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshihara, M., Hayashizaki, Y. & Murakawa, Y. Genomic Instability of iPSCs: Challenges Towards Their Clinical Applications. Stem Cell Rev. 13, 7–16 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Abyzov, A. et al. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 492, 438–442 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, L. et al. Low incidence of DNA sequence variation in human induced pluripotent stem cells generated by nonintegrating plasmid expression. Cell Stem Cell 10, 337–344 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gore, A. et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 471, 63–67 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howden, S. E. et al. Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy. Proc. Natl. Acad. Sci. USA 108, 6537–6542 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinlan, A. R. et al. Genome sequencing of mouse induced pluripotent stem cells reveals retroelement stability and infrequent DNA rearrangement during reprogramming. Cell Stem Cell 9, 366–373 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, J. et al. Elevated coding mutation rate during the reprogramming of human somatic cells into induced pluripotent stem cells. Stem Cells 30, 435–440 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sugiura, M. et al. Induced pluripotent stem cell generation-associated point mutations arise during the initial stages of the conversion of these cells. Stem Cell Reports 2, 52–63 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshihara, M. et al. Hotspots of de novo point mutations in induced pluripotent stem cells. Cell Rep. 21, 308–315 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, P. et al. Passage number is a major contributor to genomic structural variations in mouse iPSCs. Stem Cells 32, 2657–2667 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lezmi, E., Jung, J. & Benvenisty, N. High prevalence of acquired cancer-related mutations in 146 human pluripotent stem cell lines and their differentiated derivatives. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02090-2 (2024).

  • Trounson, A. Potential pitfall of pluripotent stem cells. N. Engl. J. Med. 377, 490–491 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Immunogenicity and functional evaluation of iPSC-derived organs for transplantation. Cell Discov. 1, 15015 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guha, P., Morgan, J. W., Mostoslavsky, G., Rodrigues, N. P. & Boyd, A. S. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell 12, 407–412 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Araki, R. et al. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 494, 100–104 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, T. et al. Humanized mice reveal differential immunogenicity of cells derived from autologous induced pluripotent stem cells. Cell Stem Cell 17, 353–359 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, T. Y. et al. Co-transplantation of autologous T(reg) cells in a cell therapy for Parkinson’s disease. Nature 619, 606–615 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ozaki, M. et al. Evaluation of the immunogenicity of human iPS cell-derived neural stem/progenitor cells in vitro. Stem Cell Res. 19, 128–138 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kimura, T., Yamashita, A., Ozono, K. & Tsumaki, N. Limited immunogenicity of human induced pluripotent stem cell-derived cartilages. Tissue Eng. Part A 22, 1367–1375 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alam, A. et al. Cellular infiltration in traumatic brain injury. J. Neuroinflammation 17, 328 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karve, I. P., Taylor, J. M. & Crack, P. J. The contribution of astrocytes and microglia to traumatic brain injury. Br. J. Pharmacol. 173, 692–702 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirkeby, A. et al. Predictive markers guide differentiation to improve graft outcome in clinical translation of hESC-based therapy for Parkinson’s disease. Cell Stem Cell 20, 135–148 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doi, D. et al. Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson’s disease. Nat. Commun. 11, 3369 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gantner, C. W., Cota-Coronado, A., Thompson, L. H. & Parish, C. L. An optimized protocol for the generation of midbrain dopamine neurons under defined conditions. STAR Protoc. 1, 100065 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong, M. et al. Human stem cell-derived neurons repair circuits and restore neural function. Cell Stem Cell 28, 112–126.e6 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piao, J. et al. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain dopamine progenitor product, MSK-DA01. Cell Stem Cell 28, 217–229.e7 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirkeby, A. et al. Preclinical quality, safety, and efficacy of a human embryonic stem cell-derived product for the treatment of Parkinson’s disease, STEM-PD. Cell Stem Cell 30, 1299–1314.e9 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, S. et al. Preclinical and dose-ranging assessment of hESC-derived dopaminergic progenitors for a clinical trial on Parkinson’s disease. Cell Stem Cell 31, 25–38.e8 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. et al. Spotting-based differentiation of functional dopaminergic progenitors from human pluripotent stem cells. Nat. Protoc. 17, 890–909 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nikkhah, G., Eberhard, J., Olsson, M. & Bjorklund, A. Preservation of fetal ventral mesencephalic cells by cool storage: in-vitro viability and TH-positive neuron survival after microtransplantation to the striatum. Brain Res. 687, 22–34 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barker, R. A., Fricker, R. A., Abrous, D. N., Fawcett, J. & Dunnett, S. B. A comparative study of preparation techniques for improving the viability of nigral grafts using vital stains, in vitro cultures, and in vivo grafts. Cell Transplant. 4, 173–200 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watts, C., Caldwell, M. A. & Dunnett, S. B. The development of intracerebral cell-suspension implants is influenced by the grafting medium. Cell Transplant. 7, 573–583 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wakeman, D. R. et al. Cryopreservation maintains functionality of human iPSC dopamine neurons and rescues Parkinsonian phenotypes in vivo. Stem Cell Reports 9, 149–161 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hiramatsu, S. et al. Cryopreservation of induced pluripotent stem cell-derived dopaminergic neurospheres for clinical application. J. Parkinsons Dis. 12, 871–884 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niclis, J. C. et al. Efficiently specified ventral midbrain dopamine neurons from human pluripotent stem cells under xeno-free conditions restore motor deficits in Parkinsonian rodents. Stem Cells Transl. Med. 6, 937–948 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forrester, J. V., McMenamin, P. G. & Dando, S. J. CNS infection and immune privilege. Nat. Rev. Neurosci. 19, 655–671 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, T., Zhang, Z. N., Rong, Z. & Xu, Y. Immunogenicity of induced pluripotent stem cells. Nature 474, 212–215 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, H. & Pienaar, I. S. Disruption of the blood-brain barrier in Parkinson’s disease: curse or route to a cure? Front. Biosci. 19, 272–280 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Waisman, A., Liblau, R. S. & Becher, B. Innate and adaptive immune responses in the CNS. Lancet Neurol. 14, 945–955 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, S. C. et al. Does age at onset of first major depressive episode indicate the subtype of major depressive disorder?: the clinical research center for depression study. Yonsei Med. J. 55, 1712–1720 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cutolo, M. et al. Use of glucocorticoids and risk of infections. Autoimmun. Rev. 8, 153–155 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stuck, A. E., Minder, C. E. & Frey, F. J. Risk of infectious complications in patients taking glucocorticosteroids. Rev. Infect. Dis. 11, 954–963 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aberra, F. N. & Lichtenstein, G. R. Methods to avoid infections in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 11, 685–695 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Price, M. L., Tidman, M. J., Ogg, C. S. & MacDonald, D. M. Skin cancer and cyclosporine therapy. N. Engl. J. Med. 313, 1420 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muellenhoff, M. W. & Koo, J. Y. Cyclosporine and skin cancer: an international dermatologic perspective over 25 years of experience. A comprehensive review and pursuit to define safe use of cyclosporine in dermatology. J. Dermatolog. Treat. 23, 290–304 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alemdar, A. Y., Sadi, D., McAlister, V. & Mendez, I. Intracerebral co-transplantation of liposomal tacrolimus improves xenograft survival and reduces graft rejection in the hemiparkinsonian rat. Neuroscience 146, 213–224 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huber-Lang, M., Lambris, J. D. & Ward, P. A. Innate immune responses to trauma. Nat. Immunol. 19, 327–341 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duan, T., Du, Y., Xing, C., Wang, H. Y. & Wang, R. F. Toll-Like receptor signaling and its role in cell-mediated immunity. Front. Immunol. 13, 812774 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, R. Z. et al. Neuroinflammation following traumatic brain injury: Take it seriously or not. Front. Immunol. 13, 855701 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, L. M., Toulouse, A., Connor, T. J. & Nolan, Y. M. Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease. Neuropharmacology 62, 2154–2168 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yacoubian, T. A. et al. Brain and systemic inflammation in de novo Parkinson’s disease. Mov. Disord. 38, 743–754 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tansey, M. G. et al. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 22, 657–673 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyawaki, Y., Samata, B., Kikuchi, T., Nishimura, K. & Takahashi, J. Zonisamide promotes survival of human-induced pluripotent stem cell-derived dopaminergic neurons in the striatum of female rats. J. Neurosci. Res. 98, 1575–1587 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gantner, C. W. et al. Viral Delivery of GDNF promotes functional integration of human stem cell grafts in Parkinson’s disease. Cell Stem Cell 26, 511–526.e5 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kikuchi, T. et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 548, 592–596 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samata, B. et al. Purification of functional human ES and iPSC-derived midbrain dopaminergic progenitors using LRTM1. Nat. Commun. 7, 13097 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. Chemical Control of Grafted Human PSC-Derived Neurons in a Mouse Model of Parkinson’s Disease. Cell Stem Cell 18, 817–826 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doi, D. et al. Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Reports 2, 337–350 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grealish, S. et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 15, 653–665 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sundberg, M. et al. Improved cell therapy protocols for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells 31, 1548–1562 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doi, D. et al. Prolonged maturation culture favors a reduction in the tumorigenicity and the dopaminergic function of human ESC-derived neural cells in a primate model of Parkinson’s disease. Stem Cells 30, 935–945 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kikuchi, T. et al. Survival of human induced pluripotent stem cell-derived midbrain dopaminergic neurons in the brain of a primate model of Parkinson’s disease. J. Parkinsons Dis. 1, 395–412 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emborg, M. E. et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain. Cell Rep. 3, 646–650 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao, Y. et al. Autologous transplant therapy alleviates motor and depressive behaviors in parkinsonian monkeys. Nat. Med. 27, 632–639 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hallett, P. J. et al. Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell 16, 269–274 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Rham, C. & Villard, J. Potential and limitation of HLA-based banking of human pluripotent stem cells for cell therapy. J. Immunol. Res. 2014, 518135 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ford, E. et al. Human Pluripotent stem cells-based therapies for neurodegenerative diseases: current status and challenges. Cells 9, 2517 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akabayashi, A., Nakazawa, E. & Jecker, N. S. Endangerment of the iPSC stock project in Japan: on the ethics of public funding policies. J. Med. Ethics 44, 700–702 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Gourraud, P. A., Gilson, L., Girard, M. & Peschanski, M. The role of human leukocyte antigen matching in the development of multiethnic “haplobank” of induced pluripotent stem cell lines. Stem Cells 30, 180–186 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morizane, A. et al. MHC matching improves engraftment of iPSC-derived neurons in non-human primates. Nat. Commun. 8, 385 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mizukami, Y. et al. MHC-matched induced pluripotent stem cells can attenuate cellular and humoral immune responses but are still susceptible to innate immunity in pigs. PLoS One 9, e98319 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lanza, R., Russell, D. W. & Nagy, A. Engineering universal cells that evade immune detection. Nat. Rev. Immunol. 19, 723–733 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simpson, A., Hewitt, A. W. & Fairfax, K. A. Universal cell donor lines: A review of the current research. Stem Cell Reports 18, 2038–2046 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riolobos, L. et al. HLA engineering of human pluripotent stem cells. Mol. Ther. 21, 1232–1241 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, P. et al. Generating hypoimmunogenic human embryonic stem cells by the disruption of beta 2-microglobulin. Stem Cell Rev. Rep. 9, 806–813 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bix, M. et al. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice. Nature 349, 329–331 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gornalusse, G. G. et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35, 765–772 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37, 252–258 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, H. et al. Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell 24, 566–578.e7 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shani, T. & Hanna, J. H. Universally non-immunogenic iPSCs. Nat. Biomed. Eng. 3, 337–338 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Trounson, A., Boyd, N. R. & Boyd, R. L. Toward a universal solution: Editing compatibility into pluripotent stem cells. Cell Stem Cell 24, 508–510 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, Q. et al. Linking a cell-division gene and a suicide gene to define and improve cell therapy safety. Nature 563, 701–704 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harding, J., Vintersten-Nagy, K. & Nagy, A. Universal stem cells: Making the unsafe safe. Cell Stem Cell 27, 198–199 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morganti-Kossmann, M. C., Rancan, M., Otto, V. I., Stahel, P. F. & Kossmann, T. Role of cerebral inflammation after traumatic brain injury: a revisited concept. Shock 16, 165–177 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Helmy, A., Carpenter, K. L., Menon, D. K., Pickard, J. D. & Hutchinson, P. J. The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J. Cereb. Blood Flow Metab. 31, 658–670 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, S. H., Gangidine, M., Pritts, T. A., Goodman, M. D. & Lentsch, A. B. Interleukin 6 mediates neuroinflammation and motor coordination deficits after mild traumatic brain injury and brief hypoxia in mice. Shock 40, 471–475 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clausen, F. et al. Neutralization of interleukin-1beta modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice. Eur. J. Neurosci. 30, 385–396 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Kabadi, S. V. et al. S100B inhibition reduces behavioral and pathologic changes in experimental traumatic brain injury. J. Cereb. Blood Flow Metab. 35, 2010–2020 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chio, C. C. et al. Therapeutic evaluation of etanercept in a model of traumatic brain injury. J. Neurochem. 115, 921–929 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zietlow, R., Sinclair, S. R., Schwiening, C. J., Dunnett, S. B. & Fawcettt, J. W. The release of excitatory amino acids, dopamine, and potassium following transplantation of embryonic mesencephalic dopaminergic grafts to the rat striatum, and their effects on dopaminergic neuronal survival in vitro. Cell Transplant. 11, 637–652 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Sinclair, S. R., Fawcett, J. W. & Dunnett, S. B. Delayed implantation of nigral grafts improves survival of dopamine neurones and rate of functional recovery. Neuroreport 10, 1263–1267 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wood, K. J. & Sakaguchi, S. Regulatory T cells in transplantation tolerance. Nat. Rev. Immunol. 3, 199–210 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bluestone, J. A., McKenzie, B. S., Beilke, J. & Ramsdell, F. Opportunities for Treg cell therapy for the treatment of human disease. Front. Immunol. 14, 1166135 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, L. et al. Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. Immunity 54, 1527–1542.e8 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, X. et al. Regulatory T cells protect against brain damage by alleviating inflammatory response in neuromyelitis optica spectrum disorder. J. Neuroinflammation 18, 201 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duggleby, R., Danby, R. D., Madrigal, J. A. & Saudemont, A. Clinical grade regulatory CD4(+) T Cells (Tregs): Moving toward cellular-based immunomodulatory therapies. Front. Immunol. 9, 252 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Penna, V. et al. Extracellular matrix biomimetic hydrogels, encapsulated with stromal cell-derived factor 1, improve the composition of foetal tissue grafts in a rodent model of Parkinson’s disease. Int. J. Mol. Sci. 23, 4646 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moriarty, N., Cabre, S., Alamilla, V., Pandit, A. & Dowd, E. Encapsulation of young donor age dopaminergic grafts in a GDNF-loaded collagen hydrogel further increases their survival, reinnervation, and functional efficacy after intrastriatal transplantation in hemi-Parkinsonian rats. Eur. J. Neurosci. 49, 487–496 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Adil, M. M. et al. Engineered hydrogels increase the post-transplantation survival of encapsulated hESC-derived midbrain dopaminergic neurons. Biomaterials 136, 1–11 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, Q. Regulatory T cells aid stem-cell therapy for Parkinson’s disease. Nature 619, 470–472 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoban, D. B. et al. Impact of alpha-synuclein pathology on transplanted hESC-derived dopaminergic neurons in a humanized alpha-synuclein rat model of PD. Proc. Natl. Acad. Sci. USA 117, 15209–15220 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nolan, Y. M., Sullivan, A. M. & Toulouse, A. Parkinson’s disease in the nuclear age of neuroinflammation. Trends Mol. Med. 19, 187–196 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tiklova, K. et al. Single cell transcriptomics identifies stem cell-derived graft composition in a model of Parkinson’s disease. Nat. Commun. 11, 2434 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Santo, S., Meyer, M., Ducray, A. D., Andereggen, L. & Widmer, H. R. A Combination of NT-4/5 and GDNF is favorable for cultured human nigral neural progenitor cells. Cell Transplant. 27, 648–653 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Studer, L. & Tabar, V. Parkinson’s disease grafts benefit from well-timed growth factor. Nature 582, 39–40 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moriarty, N. et al. A combined cell and gene therapy approach for homotopic reconstruction of midbrain dopamine pathways using human pluripotent stem cells. Cell Stem Cell 29, 434–448.e5 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nahimi, A., Kinnerup, M. B., Sommerauer, M., Gjedde, A. & Borghammer, P. Molecular imaging of the noradrenergic system in idiopathic Parkinson’s disease. Int. Rev. Neurobiol. 141, 251–274 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Espay, A. J., LeWitt, P. A. & Kaufmann, H. Norepinephrine deficiency in Parkinson’s disease: the case for noradrenergic enhancement. Mov. Disord. 29, 1710–1719 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samanci, B., Tan, S., Michielse, S., Kuijf, M. L. & Temel, Y. The habenula in Parkinson’s disease: Anatomy, function, and implications for mood disorders – A narrative review. J. Chem. Neuroanat. 136, 102392 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vegas-Suarez, S. et al. Dysfunction of serotonergic neurons in Parkinson’s disease and dyskinesia. Int. Rev. Neurobiol. 146, 259–279 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar