Search
Close this search box.

Oral mitochondrial transplantation using nanomotors to treat ischaemic heart disease – Nature Nanotechnology

  • Brown, D. A. et al. Mitochondrial function as a therapeutic target in heart failure. Nat. Rev. Cardiol. 14, 238–250 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Godoy, L. C. et al. Association of beta-blocker therapy with cardiovascular outcomes in patients with stable ischemic heart disease. J. Am. Coll. Cardiol. 81, 2299–2311 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cohn, P. F., Fox, K. M. & Daly, C. Silent myocardial ischemia. Circulation 108, 1263–1277 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Ibanez, B. et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 39, 119–177 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ikeda, G. et al. Mitochondria-rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium. J. Am. Coll. Cardiol. 77, 1073–1088 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, M. et al. Mitochondrial transplantation as a novel therapeutic strategy for cardiovascular diseases. J. Transl. Med. 21, 347 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bertero, E., Maack, C. & O’Rourke, B. Mitochondrial transplantation in humans: ‘magical’ cure or cause for concern? J. Clin. Invest. 128, 5191–5194 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lightowlers, R. N., Chrzanowska-Lightowlers, Z. M. & Russell, O. M. Mitochondrial transplantation—a possible therapeutic for mitochondrial dysfunction? Mitochondrial transfer is a potential cure for many diseases but proof of efficacy and safety is still lacking. EMBO Rep. 21, e50964 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, T. & Miao, C. Mitochondrial transplantation as a promising therapy for mitochondrial diseases. Acta Pharm. Sin. B 13, 1028–1035 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • McCully, J. D. et al. Injection of isolated mitochondria during early reperfusion for cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 296, H94–H105 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, X. et al. Alda-1 treatment promotes the therapeutic effect of mitochondrial transplantation for myocardial ischemia-reperfusion injury. Bioact. Mater. 6, 2058–2069 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayashida, K. et al. Exogenous mitochondrial transplantation improves survival and neurological outcomes after resuscitation from cardiac arrest. BMC Med. 21, 56 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baryakova, T. H., Pogostin, B. H., Langer, R. & McHugh, K. J. Overcoming barriers to patient adherence: the case for developing innovative drug delivery systems. Nat. Rev. Drug Discov. 22, 387–409 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W., Huang, T., Shi, K., Chu, B. & Qian, Z. Chemotaxis-based self-accumulation of surface-engineered mitochondria for cancer therapeutic improvement. Nano Today 35, 100966 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H. et al. A nitric-oxide driven chemotactic nanomotor for enhanced immunotherapy of glioblastoma. Nat. Commun. 14, 941 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, S. et al. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci. Robot. 5, eaba6137 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lanza, I. R. & Nair, K. S. Functional assessment of isolated mitochondria in vitro. Methods Enzymol. 457, 349–372 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heitzer, T., Schlinzig, T., Krohn, K., Meinertz, T. & Münzel, T. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 104, 2673–2678 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. A universal chemotactic targeted delivery strategy for inflammatory diseases. Adv. Mater. 34, e2206654 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Somasundar, A. et al. Positive and negative chemotaxis of enzyme-coated liposome motors. Nat. Nanotechnol. 14, 1129–1134 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Michela, P., Velia, V., Aldo, P. & Ada, P. Role of connexin 43 in cardiovascular diseases. Eur. J. Pharmacol. 768, 71–76 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bennett, B. C. et al. An electrostatic mechanism for Ca2+-mediated regulation of gap junction channels. Nat. Commun. 7, 8770 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Islam, M. N. et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 18, 759–765 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gadok, A. K. et al. Connectosomes for direct molecular delivery to the cellular cytoplasm. J. Am. Chem. Soc. 138, 12833–12840 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, P. et al. A plant-derived natural photosynthetic system for improving cell anabolism. Nature 612, 546–554 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, T. et al. Iron oxide nanoparticles augment the intercellular mitochondrial transfer-mediated therapy. Sci. Adv. 7, eabj0534 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Massion, P. B., Feron, O., Dessy, C. & Balligand, J.-L. Nitric oxide and cardiac function: ten years after, and continuing. Circ. Res. 93, 388–398 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manders, E. M. M., Verbeek, F. J. & Aten, J. A. Measurement of co-localization of objects in dual-colour confocal images. J. Microsc. 169, 375–382 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, P. et al. Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: a mechanism involving calcium overload/XO/ROS/mPTP pathway. Redox Biol. 16, 157–168 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, X. et al. Zwitterionic micelles efficiently deliver oral insulin without opening tight junctions. Nat. Nanotechnol. 15, 605–614 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y. et al. A pH‐triggered self‐unpacking capsule containing zwitterionic hydrogel‐coated MOF nanoparticles for efficient oral exendin‐4 delivery. Adv. Mater. 33, e2102044 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, W. et al. Oral delivery of therapeutic antibodies with a transmucosal polymeric carrier. ACS Nano 17, 4373–4386 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pearce, S. C. et al. Intestinal in vitro and ex vivo models to study host–microbiome interactions and acute stressors. Front. Physiol. 9, 1584 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drucker, D. J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov. 19, 277–289 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yellon, D. M. & Hausenloy, D. J. Myocardial reperfusion injury. N. Engl. J. Med. 357, 1121–1135 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, A. et al. Delivery of mitochondria confers cardioprotection through mitochondria replenishment and metabolic compliance. Mol. Ther. 31, 1468–1479 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tevaearai, H. T., Walton, G. B., Eckhart, A. D., Keys, J. R. & Koch, W. J. Donor heart contractile dysfunction following prolonged ex vivo preservation can be prevented by gene-mediated β-adrenergic signaling modulation. Eur. J. Cardiothorac. Surg. 22, 733–737 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Tang, X. et al. Lipophilic NO‐driven nanomotors as drug balloon coating for the treatment of atherosclerosis. Small 19, 2203238 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 13, 1182–1190 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W., Shi, K., Chu, B., Wei, X. & Qian, Z. Mitochondrial surface engineering for multidrug resistance reversal. Nano Lett. 19, 2905–2913 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, C. et al. Irisin controls growth, intracellular Ca2+ signals, and mitochondrial thermogenesis in cardiomyoblasts. PLoS One 10, e0136816 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dagda, R. K. et al. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J. Biol. Chem. 284, 13843–13855 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vandergriff, A. C., Hensley, M. T. & Cheng, K. Isolation and cryopreservation of neonatal rat cardiomyocytes. J. Vis. Exp. 9, e52726 (2015).


    Google Scholar
     

  • Yamagata, T. et al. Characterization of insulin protection properties of complexation hydrogels in gastric and intestinal enzyme fluids. J. Control. Release 112, 343–349 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rabiolo, A., Bignami, F., Rama, P. & Ferrari, G. VesselJ: a new tool for semiautomatic measurement of corneal neovascularization. Invest. Ophthalmol. Vis. Sci. 56, 8199–8206 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Masuzawa, A. et al. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 304, H966–H982 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cowan, D. B. et al. Intracoronary delivery of mitochondria to the ischemic heart for cardioprotection. PLoS One 11, e0160889 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaza, A. K. et al. Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J. Thorac. Cardiovasc. Surg. 153, 934–943 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Shin, B. et al. A novel biological strategy for myocardial protection by intracoronary delivery of mitochondria: safety and efficacy. JACC Basic Transl. Sci. 4, 871–888 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blitzer, D. et al. Delayed transplantation of autologous mitochondria for cardioprotection in a porcine model. Ann. Thorac. Surg. 109, 711–719 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Guariento, A. et al. Mitochondrial transplantation for myocardial protection in ex-situ-perfused hearts donated after circulatory death. J. Heart Lung Transplant. 39, 1279–1288 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Guariento, A. et al. Preischemic autologous mitochondrial transplantation by intracoronary injection for myocardial protection. J. Thorac. Cardiovasc. Surg. 160, e15–e29 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, X. et al. Intravenous transplantation of an ischemic-specific peptide-TPP-mitochondrial compound alleviates myocardial ischemic reperfusion injury. ACS Nano 17, 896–909 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emani, S. M., Piekarski, B. L., Harrild, D., Del Nido, P. J. & McCully, J. D. Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J. Thorac. Cardiovasc. Surg. 154, 286–289 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Guariento, A. et al. Autologous mitochondrial transplantation for cardiogenic shock in pediatric patients following ischemia-reperfusion injury. J. Thorac. Cardiovasc. Surg. 162, 992–1001 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kristensen, K. L., Rauer, L. J., Mortensen, P. E. & Kjeldsen, B. J. Reoperation for bleeding in cardiac surgery. Interact. Cardiovasc. Thorac. Surg. 14, 709–713 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zubrzycki, M. et al. Assessment and pathophysiology of pain in cardiac surgery. J. Pain. Res. 11, 1599–1611 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanner, T. G. & Colvin, M. O. Pulmonary complications of cardiac surgery. Lung 198, 889–896 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kubota, H. et al. Deep sternal wound infection after cardiac surgery. J. Cardiothorac. Surg. 8, 132 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doll, J. A. et al. Management of percutaneous coronary intervention complications: algorithms from the 2018 and 2019 Seattle percutaneous coronary intervention complications conference. Circ. Cardiovasc. Interv. 13, e008962 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Stern, S. & Bayes de Luna, A. Coronary artery spasm: a 2009 update. Circulation 119, 2531–2534 (2009).

    Article 
    PubMed 

    Google Scholar