Search
Close this search box.

Oncolytic mineralized bacteria as potent locally administered immunotherapeutics – Nature Biomedical Engineering

  • Coley, W. B. I. I. Contribution to the knowledge of sarcoma. Ann. Surg. 14, 199–220 (1891).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petroni, G., Cantley, L. C., Santambrogio, L., Formenti, S. C. & Galluzzi, L. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nat. Rev. Clin. Oncol. 19, 114–131 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilkins, A. & Parker, C. Treating prostate cancer with radiotherapy. Nat. Rev. Clin. Oncol. 7, 583–589 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Improved chemotherapies. Nat. Rev. Cancer 10, 740 (2010).

  • Hoption Cann, S. A., van Netten, J. P., van Netten, C. & Glover, D. W. Spontaneous regression: a hidden treasure buried in time. Med. Hypotheses 58, 115–119 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni, D. et al. Biomimetically engineered demi-bacteria potentiate vaccination against cancer. Adv. Sci. 4, 1700083 (2017).

    Article 
    MathSciNet 

    Google Scholar
     

  • Huang, X. et al. Bacteria-based cancer immunotherapy. Adv. Sci. 8, 2003572 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, S., Gravekamp, C., Bermudes, D. & Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 18, 727–743 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, G., Ji, J. & Liu, Z. Multifunctional MnO2 nanoparticles for tumor microenvironment modulation and cancer therapy. WIREs Nanomed. Nanobi. 13, e1720 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xuan, Y. et al. Bacteria-triggered tumor-specific thrombosis to enable potent photothermal immunotherapy of cancer. Sci. Adv. 6, eaba3546 (2022).


    Google Scholar
     

  • Yong, S.-B. et al. Non-viral nano-immunotherapeutics targeting tumor microenvironmental immune cells. Biomaterials 219, 119401 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Z. et al. Engineering bioluminescent bacteria to boost photodynamic therapy and systemic anti-tumor immunity for synergistic cancer treatment. Biomaterials 281, 121332 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoffman, R. M. Tumor-seeking Salmonella amino acid auxotrophs. Curr. Opin. Biotechnol. 22, 917–923 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demaria, O. et al. Harnessing innate immunity in cancer therapy. Nature 574, 45–56 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450–461 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Binder, D. C. et al. Antigen-specific bacterial vaccine combined with Anti-PD-L1 rescues dysfunctional endogenous T cells to reject long-established cancer. Cancer Immunol. Res. 1, 123–133 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, V. H. et al. Genetically engineered Salmonella typhimurium as an imageable therapeutic probe for cancer. Cancer Res. 70, 18–23 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heimann, D. M. & Rosenberg, S. A. Continuous intravenous administration of live genetically modified Salmonella typhimurium in patients with metastatic melanoma. J. Immunother. 26, 179–180 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toso, J. F. et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 20, 142–152 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, W. et al. Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy. Adv. Funct. Mater. 26, 5490–5498 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yang, G. et al. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 8, 902 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Q. et al. Intelligent albumin-MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 28, 7129–7136 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv, M. et al. Manganese is critical for antitumor immune responses via cGAS–STING and improves the efficacy of clinical immunotherapy. Cell Res. 30, 966–979 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity 48, 675–687 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, X. et al. Amplifying STING activation by cyclic dinucleotide–manganese particles for local and systemic cancer metalloimmunotherapy. Nat. Nanotechnol. 16, 1260–1270 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weber, A., Wasiliew, P. & Kracht, M. Interleukin-1 (IL-1) processing pathway. Sci. Signal. 3, cm1 (2010).

    PubMed 

    Google Scholar
     

  • Zhao, Z. et al. Mn2+ directly activates cGAS and structural analysis suggests Mn2+ induces a noncanonical catalytic synthesis of 2′3′-cGAMP. Cell Rep. 32, 108053 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanaka, Y. & Chen, Z. J. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal. 5, ra20 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nimmakayala, R. K. et al. Metabolic programming of distinct cancer stem cells promotes metastasis of pancreatic ductal adenocarcinoma. Oncogene 40, 215–231 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogikubo, Y. et al. Effect of lipopolysaccharide (LPS) injection on the immune responses of LPS-sensitive mice. J. Vet. Med. Sci. 66, 1189–1193 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, M. et al. ppGpp-dependent stationary phase induction of genes on Salmonella pathogenicity island 1. J. Biol. Chem. 279, 34183–34190 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, C. et al. Identification of TLR2/TLR6 signalling lactic acid bacteria for supporting immune regulation. Sci. Rep. 6, 34561 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masters, E. A. et al. Skeletal infections: microbial pathogenesis, immunity and clinical management. Nat. Rev. Microbiol. 20, 385–400 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fournier, B. The function of TLR2 during staphylococcal diseases. Front. Cell Infect. Microbiol. 2, 167 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, J., Yang, E.-B., Su, J.-J., Li, Y. & Chow, P. The tree shrews: adjuncts and alternatives to primates as models for biomedical research. J. Med. Primatol. 32, 123–130 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, Y. et al. Genome of the Chinese tree shrew. Nat. Commun. 4, 1426 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Elliot, O. S., Elliot, M. W. & Lisco, H. Breast cancer in a tree shrew (Tupaia glis). Nature 211, 1105 (1966).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, N. et al. Comparison of the effect of two methods of intraductal injection of the nipple catheter and modified up-the-teat intraductal injection in construction of tree shrew breast cancer model. Biomed. Res. 28, 9376–9381 (2017).

    CAS 

    Google Scholar
     

  • Ge, G.-Z. et al. Generation and characterization of a breast carcinoma model by PyMT overexpression in mammary epithelial cells of tree shrew, an animal close to primates in evolution. Int. J. Cancer 138, 642–651 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tohlob, M. A., Suliman, L. A., Elmorsy, A. S., Ibrahim, M. A. & Hewidy, A. A. Intratumoral hyperthermic chemotherapy injection in peripheral non-small cell lung cancer. Egypt. J. Bronchol. 14, 1–8 (2020).

    Article 

    Google Scholar
     

  • Ohnishi, K., Ohyama, N., Ito, S. & Fujiwara, K. Small hepatocellular carcinoma: treatment with US-guided intratumoral injection of acetic acid. Radiology 193, 747–752 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, B. et al. Percutaneous intratumoral injection of gemcitabine plus cisplatin mixed with fibrin glue for advanced pancreatic carcinoma: case report. Medicine 96, e8018 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, X., Chen, C., Liu, Q. & Huang, X. A meta-analysis of TAE/TACE versus emergency surgery in the treatment of ruptured HCC. Cardiovasc. Intervent. Radiol. 43, 1263–1276 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Müller, L. et al. Current strategies to identify patients that will benefit from TACE treatment and future directions a practical step-by-step guide. J. Hepatocell. Carcinoma 8, 403–419 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larijani, R. S. et al. Current status of transarterial chemoembolization (TACE) agents in hepatocellular carcinoma treatment. J. Drug. Deliv. Sci. Technol. 77, 103905 (2022).

    Article 

    Google Scholar
     

  • Llovet, J. M. et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet 359, 1734–1739 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Jin, Y.-J. et al. Survival outcome of patients with spontaneously ruptured hepatocellular carcinoma treated surgically or by transarterial embolization. World J. Gastroenterol. 19, 4537 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, J. et al. A general strategy towards personalized nanovaccines based on fluoropolymers for post-surgical cancer immunotherapy. Nat. Nanotechnol. 15, 1043–1052 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Roebuck, K. A. Regulation of interleukin-8 gene expression. J. Interferon Cytokine Res. 19, 429–438 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohta, K. et al. Toll-like receptor (TLR) expression and TLR-mediated interleukin-8 production by human submandibular gland epithelial cells. Mol. Med. Rep. 10, 2377–2382 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, F. et al. Nanoscale CaH2 materials for synergistic hydrogen-immune cancer therapy. Chem 8, 268–286 (2022).

    Article 
    CAS 

    Google Scholar