Krems, M., Pershin, Y. V. & Di Ventra, M. Ionic memcapacitive effects in nanopores. Nano Lett. 10, 2674–2678 (2010).
Wang, D. et al. Hysteresis charges in the dynamic enrichment and depletion of ions in single conical nanopores. ChemElectroChem 5, 3089–3095 (2018).
Klausen, L. H., Fuhs, T. & Dong, M. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy. Nat. Commun. 7, 12447 (2016).
Ebadi, F., Taghavinia, N., Mohammadpour, R., Hagfeldt, A. & Tress, W. Origin of apparent light-enhanced and negative capacitance in perovskite solar cells. Nat. Commun. 10, 1574 (2019).
Kumar, R. et al. Unveiling the morphology effect on the negative capacitance and large ideality factor in perovskite light-emitting diodes. ACS Appl. Mater. Interfaces 12, 34265–34273 (2020).
Lin, C.-Y., Combs, C., Su, Y.-S., Yeh, L.-H. & Siwy, Z. S. Rectification of concentration polarization in mesopores leads to high conductance ionic diodes and high performance osmotic power. J. Am. Chem. Soc. 141, 3691–3698 (2019).
Yeh, H.-C., Chang, C.-C. & Yang, R.-J. Electro-osmotic pumping and ion-concentration polarization based on conical nanopores. Phys. Rev. E 91, 062302 (2015).
Melnikov, D. V., Hulings, Z. K. & Gracheva, M. E. Concentration polarization, surface charge, and ionic current blockade in nanopores. J. Phys. Chem. C 124, 19802–19808 (2020).
Brown, W., Kvetny, M., Yang, R. & Wang, G. Selective ion enrichment and charge storage through transport hysteresis in conical nanopipettes. J. Phys. Chem. C 126, 10872–10879 (2022).
Diard, J.-P. & Montella, C. Diffusion-trapping impedance under restricted linear diffusion conditions. J. Electroanal. Chem. 557, 19–36 (2003).
Hatsuki, R., Yujiro, F. & Yamamoto, T. Direct measurement of electric double layer in a nanochannel by electrical impedance spectroscopy. Microfluid. Nanofluid. 14, 983–988 (2013).
Schiffbauer, J., Park, S. & Yossifon, G. Electrical impedance spectroscopy of microchannel-nanochannel interface devices. Phys. Rev. Lett. 110, 204504 (2013).
Ramos‐Barrado, J., Galan Montenegro, P. & Cambón, C. C. A generalized Warburg impedance for a nonvanishing relaxation process. J. Chem. Phys. 105, 2813–2815 (1996).
Ren, H., Zhao, Y., Chen, S. & Yang, L. A comparative study of lumped equivalent circuit models of a lithium battery for state of charge prediction. Int. J. Energy Res. 43, 7306–7315 (2019).
Bruch, M., Millet, L., Kowal, J. & Vetter, M. Novel method for the parameterization of a reliable equivalent circuit model for the precise simulation of a battery cell’s electric behavior. J. Power Sources 490, 229513 (2021).
Lukács, Z. & Kristóf, T. A generalized model of the equivalent circuits in the electrochemical impedance spectroscopy. Electrochim. Acta 363, 137199 (2020).
Dierickx, S., Weber, A. & Ivers-Tiffée, E. How the distribution of relaxation times enhances complex equivalent circuit models for fuel cells. Electrochim. Acta 355, 136764 (2020).
Bazant, M. Z., Kilic, M. S., Storey, B. D. & Ajdari, A. Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv. Colloid Interface Sci. 152, 48–88 (2009).
García-Sánchez, P., Ramos, A., Gonzalez, A., Green, N. G. & Morgan, H. Flow reversal in traveling-wave electrokinetics: an analysis of forces due to ionic concentration gradients. Langmuir 25, 4988–4997 (2009).
Biesheuvel, P. & Van Soestbergen, M. Counterion volume effects in mixed electrical double layers. J. Colloid Interface Sci. 316, 490–499 (2007).
Mishchuk, N. A. Concentration polarization of interface and non-linear electrokinetic phenomena. Adv. Colloid Interface Sci. 160, 16–39 (2010).
Lan, W.-J., Holden, D. A. & White, H. S. Pressure-dependent ion current rectification in conical-shaped glass nanopores. J. Am. Chem. Soc. 133, 13300–13303 (2011).
Luo, L., Holden, D. A. & White, H. S. Negative differential electrolyte resistance in a solid-state nanopore resulting from electroosmotic flow bistability. ACS Nano 8, 3023–3030 (2014).
Yusko, E. C., An, R. & Mayer, M. Electroosmotic flow can generate ion current rectification in nano- and micropores. ACS Nano 4, 477–487 (2010).
Smeets, R. M., Keyser, U. F., Dekker, N. H. & Dekker, C. Noise in solid-state nanopores. Proc. Natl Acad. Sci. USA 105, 417–421 (2008).
Wang, D. & Wang, G. Dynamics of ion transport and electric double layer in single conical nanopores. J. Electroanal. Chem. 779, 39–46 (2016).
Wen, C. et al. Generalized noise study of solid-state nanopores at low frequencies. ACS Sens. 2, 300–307 (2017).
Bazant, M. Z., Thornton, K. & Ajdari, A. Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 70, 021506 (2004).
Zhang, L.-X., Cao, X.-H., Cai, W.-P. & Li, Y.-Q. Observations of the effect of confined space on fluorescence and diffusion properties of molecules in single conical nanopore channels. J. Fluoresc. 21, 1865–1870 (2011).
Alvarez, O. & Latorre, R. Voltage-dependent capacitance in lipid bilayers made from monolayers. Biophys. J. 21, 1–17 (1978).
Lastra, L. S., Bandara, Y., Nguyen, M., Farajpour, N. & Freedman, K. J. On the origins of conductive pulse sensing inside a nanopore. Nat. Commun. 13, 2186 (2022).
Carlsen, A. T., Zahid, O. K., Ruzicka, J., Taylor, E. W. & Hall, A. R. Interpreting the conductance blockades of DNA translocations through solid-state nanopores. ACS Nano 8, 4754–4760 (2014).
Chau, C. et al. Probing RNA conformations using a polymer–electrolyte solid-state nanopore. ACS Nano 16, 20075–20085 (2022).
Chau, C. C., Radford, S. E., Hewitt, E. W. & Actis, P. Macromolecular crowding enhances the detection of DNA and proteins by a solid-state nanopore. Nano Lett. 20, 5553–5561 (2020).
Al Sulaiman, D., Cadinu, P., Ivanov, A. P., Edel, J. B. & Ladame, S. Chemically modified hydrogel-filled nanopores: a tunable platform for single-molecule sensing. Nano Lett. 18, 6084–6093 (2018).
Al Sulaiman, D., Gatehouse, A., Ivanov, A. P., Edel, J. B. & Ladame, S. Length-dependent, single-molecule analysis of short double-stranded DNA fragments through hydrogel-filled nanopores: a potential tool for size profiling cell-free DNA. ACS Appl. Mater. Interfaces 13, 26673–26681 (2021).
Zhang, Y. et al. Ionic current modulation from DNA translocation through nanopores under high ionic strength and concentration gradients. Nanoscale 9, 930–939 (2017).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41565-024-01829-5