Negative memory capacitance and ionic filtering effects in asymmetric nanopores

  • Krems, M., Pershin, Y. V. & Di Ventra, M. Ionic memcapacitive effects in nanopores. Nano Lett. 10, 2674–2678 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, D. et al. Hysteresis charges in the dynamic enrichment and depletion of ions in single conical nanopores. ChemElectroChem 5, 3089–3095 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Klausen, L. H., Fuhs, T. & Dong, M. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy. Nat. Commun. 7, 12447 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebadi, F., Taghavinia, N., Mohammadpour, R., Hagfeldt, A. & Tress, W. Origin of apparent light-enhanced and negative capacitance in perovskite solar cells. Nat. Commun. 10, 1574 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, R. et al. Unveiling the morphology effect on the negative capacitance and large ideality factor in perovskite light-emitting diodes. ACS Appl. Mater. Interfaces 12, 34265–34273 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, C.-Y., Combs, C., Su, Y.-S., Yeh, L.-H. & Siwy, Z. S. Rectification of concentration polarization in mesopores leads to high conductance ionic diodes and high performance osmotic power. J. Am. Chem. Soc. 141, 3691–3698 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeh, H.-C., Chang, C.-C. & Yang, R.-J. Electro-osmotic pumping and ion-concentration polarization based on conical nanopores. Phys. Rev. E 91, 062302 (2015).

    Article 

    Google Scholar
     

  • Melnikov, D. V., Hulings, Z. K. & Gracheva, M. E. Concentration polarization, surface charge, and ionic current blockade in nanopores. J. Phys. Chem. C 124, 19802–19808 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Brown, W., Kvetny, M., Yang, R. & Wang, G. Selective ion enrichment and charge storage through transport hysteresis in conical nanopipettes. J. Phys. Chem. C 126, 10872–10879 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Diard, J.-P. & Montella, C. Diffusion-trapping impedance under restricted linear diffusion conditions. J. Electroanal. Chem. 557, 19–36 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Hatsuki, R., Yujiro, F. & Yamamoto, T. Direct measurement of electric double layer in a nanochannel by electrical impedance spectroscopy. Microfluid. Nanofluid. 14, 983–988 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Schiffbauer, J., Park, S. & Yossifon, G. Electrical impedance spectroscopy of microchannel-nanochannel interface devices. Phys. Rev. Lett. 110, 204504 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Ramos‐Barrado, J., Galan Montenegro, P. & Cambón, C. C. A generalized Warburg impedance for a nonvanishing relaxation process. J. Chem. Phys. 105, 2813–2815 (1996).

    Article 

    Google Scholar
     

  • Ren, H., Zhao, Y., Chen, S. & Yang, L. A comparative study of lumped equivalent circuit models of a lithium battery for state of charge prediction. Int. J. Energy Res. 43, 7306–7315 (2019).

    CAS 

    Google Scholar
     

  • Bruch, M., Millet, L., Kowal, J. & Vetter, M. Novel method for the parameterization of a reliable equivalent circuit model for the precise simulation of a battery cell’s electric behavior. J. Power Sources 490, 229513 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lukács, Z. & Kristóf, T. A generalized model of the equivalent circuits in the electrochemical impedance spectroscopy. Electrochim. Acta 363, 137199 (2020).

    Article 

    Google Scholar
     

  • Dierickx, S., Weber, A. & Ivers-Tiffée, E. How the distribution of relaxation times enhances complex equivalent circuit models for fuel cells. Electrochim. Acta 355, 136764 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bazant, M. Z., Kilic, M. S., Storey, B. D. & Ajdari, A. Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv. Colloid Interface Sci. 152, 48–88 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • García-Sánchez, P., Ramos, A., Gonzalez, A., Green, N. G. & Morgan, H. Flow reversal in traveling-wave electrokinetics: an analysis of forces due to ionic concentration gradients. Langmuir 25, 4988–4997 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Biesheuvel, P. & Van Soestbergen, M. Counterion volume effects in mixed electrical double layers. J. Colloid Interface Sci. 316, 490–499 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mishchuk, N. A. Concentration polarization of interface and non-linear electrokinetic phenomena. Adv. Colloid Interface Sci. 160, 16–39 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lan, W.-J., Holden, D. A. & White, H. S. Pressure-dependent ion current rectification in conical-shaped glass nanopores. J. Am. Chem. Soc. 133, 13300–13303 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, L., Holden, D. A. & White, H. S. Negative differential electrolyte resistance in a solid-state nanopore resulting from electroosmotic flow bistability. ACS Nano 8, 3023–3030 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yusko, E. C., An, R. & Mayer, M. Electroosmotic flow can generate ion current rectification in nano- and micropores. ACS Nano 4, 477–487 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smeets, R. M., Keyser, U. F., Dekker, N. H. & Dekker, C. Noise in solid-state nanopores. Proc. Natl Acad. Sci. USA 105, 417–421 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, D. & Wang, G. Dynamics of ion transport and electric double layer in single conical nanopores. J. Electroanal. Chem. 779, 39–46 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wen, C. et al. Generalized noise study of solid-state nanopores at low frequencies. ACS Sens. 2, 300–307 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bazant, M. Z., Thornton, K. & Ajdari, A. Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 70, 021506 (2004).

    Article 

    Google Scholar
     

  • Zhang, L.-X., Cao, X.-H., Cai, W.-P. & Li, Y.-Q. Observations of the effect of confined space on fluorescence and diffusion properties of molecules in single conical nanopore channels. J. Fluoresc. 21, 1865–1870 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Alvarez, O. & Latorre, R. Voltage-dependent capacitance in lipid bilayers made from monolayers. Biophys. J. 21, 1–17 (1978).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lastra, L. S., Bandara, Y., Nguyen, M., Farajpour, N. & Freedman, K. J. On the origins of conductive pulse sensing inside a nanopore. Nat. Commun. 13, 2186 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlsen, A. T., Zahid, O. K., Ruzicka, J., Taylor, E. W. & Hall, A. R. Interpreting the conductance blockades of DNA translocations through solid-state nanopores. ACS Nano 8, 4754–4760 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chau, C. et al. Probing RNA conformations using a polymer–electrolyte solid-state nanopore. ACS Nano 16, 20075–20085 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chau, C. C., Radford, S. E., Hewitt, E. W. & Actis, P. Macromolecular crowding enhances the detection of DNA and proteins by a solid-state nanopore. Nano Lett. 20, 5553–5561 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al Sulaiman, D., Cadinu, P., Ivanov, A. P., Edel, J. B. & Ladame, S. Chemically modified hydrogel-filled nanopores: a tunable platform for single-molecule sensing. Nano Lett. 18, 6084–6093 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al Sulaiman, D., Gatehouse, A., Ivanov, A. P., Edel, J. B. & Ladame, S. Length-dependent, single-molecule analysis of short double-stranded DNA fragments through hydrogel-filled nanopores: a potential tool for size profiling cell-free DNA. ACS Appl. Mater. Interfaces 13, 26673–26681 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Ionic current modulation from DNA translocation through nanopores under high ionic strength and concentration gradients. Nanoscale 9, 930–939 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar