Multimodal smart systems reprogramme macrophages and remove urate to treat gouty arthritis – Nature Nanotechnology

  • Dehlin, M., Jacobsson, L. & Roddy, E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 16, 380–390 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Cabău, G., Crișan, T. O., Klück, V., Popp, R. A. & Joosten, L. A. B. Urate-induced immune programming: consequences for gouty arthritis and hyperuricemia. Immunol. Rev. 294, 92–105 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, H. K., McCormick, N. & Yokose, C. Excess comorbidities in gout: the causal paradigm and pleiotropic approaches to care. Nat. Rev. Rheumatol. 18, 97–111 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, L. et al. Biomimetic polysaccharide-cloaked lipidic nanovesicles/microassemblies for improving the enzymatic activity and prolonging the action time for hyperuricemia treatment. Nanoscale 12, 15222–15235 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sands, E. et al. Tolerogenic nanoparticles mitigate the formation of anti-drug antibodies against PEGylated uricase in patients with hyperuricemia. Nat. Commun. 13, 272 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, R. et al. M2 macrophage hybrid membrane-camouflaged targeted biomimetic nanosomes to reprogram inflammatory microenvironment for enhanced enzyme-thermo-immunotherapy. Adv. Mater. 35, e2304123 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Qaseem, A., Harris, R. P. & Forciea, M. A. Management of acute and recurrent gout: a clinical practice guideline from the American college of physicians. Ann. Intern. Med. 166, 58–68 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • van Durme, C. M. P. G. et al. Non-steroidal anti-inflammatory drugs for acute gout. Cochrane Database Sys. Rev. 2021, CD010120 (2021).


    Google Scholar
     

  • Gao, Z.-S. et al. Berberine-loaded M2 macrophage-derived exosomes for spinal cord injury therapy. Acta Biomater. 126, 211–223 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hooftman, A. et al. Macrophage fumarate hydratase restrains mtRNA-mediated interferon production. Nature 615, 490–498 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, R. et al. Exosomes derived from M2b macrophages attenuate DSS-induced colitis. Front. Immunol. 10, 2346 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. M2-type exosomes nanoparticles for rheumatoid arthritis therapy via macrophage re-polarization. J. Control. Release 341, 16–30 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Macrophage membrane biomimetic drug delivery system: for inflammation targeted therapy. J. Drug Target. 31, 229–242 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thamphiwatana, S. et al. Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proc. Natl Acad. Sci. USA 114, 11488–11493 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, T. et al. Amelioration of ulcerative colitis via inflammatory regulation by macrophage-biomimetic nanomedicine. Theranostics 10, 10106–10119 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pedone, D., Moglianetti, M., De Luca, E., Bardi, G. & Pompa, P. P. Platinum nanoparticles in nanobiomedicine. Chem. Soc. Rev. 46, 4951–4975 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, A. et al. Self-cascade uricase/catalase mimics alleviate acute gout. Nano Lett. 22, 508–516 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, D. et al. Orally administered platinum nanomarkers for urinary monitoring of inflammatory bowel disease. ACS Nano 16, 18503–18514 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, S.-B. et al. Sodium alginate modified platinum nanozymes with highly efficient and robust oxidase-like activity for antioxidant capacity and analysis of proanthocyanidins. Front. Chem. 8, 654 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, J. et al. Synergistic enhancement of immunological responses triggered by hyperthermia sensitive Pt NPs via NIR laser to inhibit cancer relapse and metastasis. Bioact. Mater. 7, 389–400 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Yu, H. et al. Biomimetic hybrid membrane-coated xuetongsu assisted with laser irradiation for efficient rheumatoid arthritis therapy. ACS Nano 16, 502–521 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, M. et al. Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment. Mater. Today Bio 14, 100223 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, Y., Cao, W. & Cao, J. Treatment of rheumatoid arthritis by phototherapy: advances and perspectives. Nanoscale 13, 14591–14608 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonkowski, M. S. & Sinclair, D. A. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol. 17, 679–690 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, A. P. et al. Health benefits of resveratrol: evidence from clinical studies. Med. Res. Rev. 39, 1851–1891 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, W., Chen, S., Wu, X., Zhu, J. & Li, J. Resveratrol relieves gouty arthritis by promoting mitophagy to inhibit activation of NLRP3 inflammasomes. J. Inflamm. Res. 14, 3523–3536 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlesinger, N., Padnick-Silver, L. & LaMoreaux, B. Enhancing the response rate to recombinant uricases in patients with gout. BioDrugs 36, 95–103 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao, Y.-W., Hua, X.-W., Chen, X. & Wu, F.-G. Platinum-doped carbon nanoparticles inhibit cancer cell migration under mild laser irradiation: multi-organelle-targeted photothermal therapy. Biomaterials 183, 30–42 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D. et al. Erythrocyte–cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano 12, 5241–5252 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, D. et al. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 142, 1–12 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, R. & Chen, C. The crown and the scepter: roles of the protein corona in nanomedicine. Adv. Mater. 31, e1805740 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tardito, S. et al. Macrophage M1/M2 polarization and rheumatoid arthritis: a systematic review. Autoimmun. Rev. 18, 102397 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C. et al. Microfluidic sonication to assemble exosome membrane-coated nanoparticles for immune evasion-mediated targeting. Nano Lett. 19, 7836–7844 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Polanco, J. C., Hand, G. R., Briner, A., Li, C. & Götz, J. Exosomes induce endolysosomal permeabilization as a gateway by which exosomal tau seeds escape into the cytosol. Acta Neuropathol. 141, 235–256 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Q. et al. Targeted immunomodulation therapy for cardiac repair by platelet membrane engineering extracellular vesicles via hitching peripheral monocytes. Biomaterials 284, 121529 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keller, M. D. et al. Decoy exosomes provide protection against bacterial toxins. Nature 579, 260–264 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, E., Saltzman, W. M. & Piotrowski-Daspit, A. S. Escaping the endosome: assessing cellular trafficking mechanisms of non-viral vehicles. J. Control. Release 335, 465–480 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qiu, C. et al. Advanced strategies for overcoming endosomal/lysosomal barrier in nanodrug delivery. Research 6, 0148 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Mitochondrial-targeted delivery of polyphenol-mediated antioxidases complexes against pyroptosis and inflammatory diseases. Adv. Mater. 35, e2208571 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Resveratrol mediates mechanical allodynia through modulating inflammatory response via the TREM2-autophagy axis in SNI rat model. J. Neuroinflammation 17, 311 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, Q. et al. Genetically engineering cell membrane-coated BTO nanoparticles for MMP2-activated piezocatalysis-immunotherapy. Adv. Mater. 35, e2300964 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wei, Z., Oh, J., Flavell, R. A. & Crawford, J. M. LACC1 bridges NOS2 and polyamine metabolism in inflammatory macrophages. Nature 609, 348–353 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, B., Lu, J. G., Siddu, A., Wernig, M. & Südhof, T. C. Synaptogenic effect of APP-Swedish mutation in familial Alzheimer’s disease. Sci. Transl. Med. 14, eabn9380 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, X. et al. Long noncoding RNA LEENE promotes angiogenesis and ischemic recovery in diabetes models. J. Clin. Invest. 133, e161759 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holick, M. F. et al. Genomic or non-genomic? A question about the pleiotropic roles of vitamin D in inflammatory-based diseases. Nutrients 15, 767 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, K. et al. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell 180, 941–955.e920 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ference, B. A. et al. Mendelian randomization study of ACLY and cardiovascular disease. N. Engl. J. Med. 380, 1033–1042 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newman-Tancredi, A., Depoortère, R. Y., Kleven, M. S., Kołaczkowski, M. & Zimmer, L. Translating biased agonists from molecules to medications: serotonin 5-HT1A receptor functional selectivity for CNS disorders. Pharmacol. Ther. 229, 107937 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wedell-Neergaard, A.-S. et al. Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: a randomized controlled trial. Cell Metab. 29, 844–855.e843 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakka, K. et al. JMJD3 activated hyaluronan synthesis drives muscle regeneration in an inflammatory environment. Science 377, 666–669 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muendlein, H. I. et al. Neutrophils and macrophages drive TNF-induced lethality via TRIF/CD14-mediated responses. Sci. Immunol. 7, eadd0665 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sobolewski, C. et al. S100A11/ANXA2 belongs to a tumour suppressor/oncogene network deregulated early with steatosis and involved in inflammation and hepatocellular carcinoma development. Gut 69, 1841–1854 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, Z. et al. TRIM41 is required to innate antiviral response by polyubiquitinating BCL10 and recruiting NEMO. Signal Transduct. Target. Ther. 6, 90 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, L. et al. Rab8a interacts directly with PI3Kγ to modulate TLR4-driven PI3K and mTOR signalling. Nat. Commun. 5, 4407 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andonian, B. J. et al. Altered skeletal muscle metabolic pathways, age, systemic inflammation, and low cardiorespiratory fitness associate with improvements in disease activity following high-intensity interval training in persons with rheumatoid arthritis. Arthritis Res. Ther. 23, 187 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pezone, A. et al. Inflammation and DNA damage: cause, effect or both. Nat. Rev. Rheumatol. 19, 200–211 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y., Simon, M., Seluanov, A. & Gorbunova, V. DNA damage and repair in age-related inflammation. Nat. Rev. Immunol. 23, 75–89 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, L. et al. Clodronate-loaded liposomal and fibroblast-derived exosomal hybrid system for enhanced drug delivery to pulmonary fibrosis. Biomaterials 271, 120761 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, S. et al. Platelet membrane and stem cell exosome hybrids enhance cellular uptake and targeting to heart injury. Nano Today 39, 101210 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, Y. et al. Chondrocyte-specific genomic editing enabled by hybrid exosomes for osteoarthritis treatment. Theranostics 12, 4866–4878 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mondal, J. et al. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J. Control. Release 353, 1127–1149 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, Y. et al. Exosome–liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv. Sci. 5, 1700611 (2018).

    Article 

    Google Scholar
     

  • Schlesinger, N., Pérez-Ruiz, F. & Lioté, F. Mechanisms and rationale for uricase use in patients with gout. Nat. Rev. Rheumatol. 19, 640–649 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar