Cancer of the colon and rectum—cancer stat facts. SEER. https://seer.cancer.gov/statfacts/html/colorect.html.
Wolf, A. M. D. et al. Colorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer Society. CA Cancer J. Clin. 68, 250–281 (2018).
Kamath, S. D. et al. Racial disparities negatively impact outcomes in early‐onset colorectal cancer independent of socioeconomic status. Cancer Med. 10, 7542–7550 (2021).
Siegel, R. L. et al. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 70, 145–164 (2020).
Giannakis, M. & Ng, K. A common cancer at an uncommon age. Science. 379, 1088–1090 (2023).
Eng, C. et al. A comprehensive framework for early-onset colorectal cancer research. Lancet Oncol. 23, e116–e128 (2022).
Spaander, M. C. W. et al. Young-onset colorectal cancer. Nat. Rev. Dis. Prim. 9, 21 (2023).
Weinberg, B. A. & Marshall, J. L. Colon cancer in young adults: trends and their implications. Curr. Oncol. Rep. 21, 3 (2019).
Kong, C. et al. Integrated metagenomic and metabolomic analysis reveals distinct gut-microbiome-derived phenotypes in early-onset colorectal cancer. Gut gutjnl-2022-327156. https://doi.org/10.1136/gutjnl-2022-327156 (2022).
Irajizad, E. et al. A blood-based metabolomic signature predictive of risk for pancreatic cancer. Cell Rep. Med. 4, 101194 (2023).
Barot, S. V. et al. Distinct intratumoral microbiome of young-onset and average-onset colorectal cancer. eBioMedicine 100, 104980 (2024).
Jayakrishnan, T. et al. Plasma metabolomic differences in early-onset compared to average-onset colorectal cancer. Sci. Rep. 14, 4294 (2024).
Yoon, G., Gaynanova, I. & Müller, C. L. Microbial networks in SPRING—semi-parametric rank-based correlation and partial correlation estimation for quantitative microbiome data. Front. Genet. 10, 516 (2019).
Stockert, J. A., Weil, R., Yadav, K. K., Kyprianou, N. & Tewari, A. K. Pseudouridine as a novel biomarker in prostate cancer. Urol. Oncol. 39, 63–71 (2021).
DeGuzman, A., Lorenson, M. Y. & Walker, A. M. Bittersweet: relevant amounts of the common sweet food additive, glycerol, accelerate the growth of PC3 human prostate cancer xenografts. BMC Res. Notes 15, 101 (2022).
Koundouros, N. & Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer 122, 4–22 (2020).
Zhu, G. et al. Untargeted GC-MS-based metabolomics for early detection of colorectal cancer. Front. Oncol. 11, 729512 (2021).
Sakai, M. et al. Arachidonic acid and cancer risk: a systematic review of observational studies. BMC Cancer 12, 606 (2012).
Chhetri, D. R. Myo-inositol and its derivatives: their emerging role in the treatment of human diseases. Front. Pharmacol. 10, 1172 (2019).
Xu, C. et al. FADS1-arachidonic acid axis enhances arachidonic acid metabolism by altering intestinal microecology in colorectal cancer. Nat. Commun. 14, 2042 (2023).
Yang, Z., Tang, H., Lu, S., Sun, X. & Rao, B. Relationship between serum lipid level and colorectal cancer: a systemic review and meta-analysis. BMJ Open 12, e052373 (2022).
Nassani, R., AlAmri, H. & Alrfaei, B. M. Abstract LB183: Erythritol acts as tumor enhancer and suppressor depending on concentrations in brain tumor cell lines. Cancer Res. 81, LB183 (2021).
Kumar, V. Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go? Purinergic Signal. 9, 145–165 (2013).
Vigano, S. et al. Targeting adenosine in cancer immunotherapy to enhance T-cell function. Front. Immunol. 10, 925 (2019).
Chen, H. et al. Urea cycle activation triggered by host-microbiota maladaptation driving colorectal tumorigenesis. Cell Metab. 35, 651–666.e7 (2023).
Alexandrou, C. et al. Sensitivity of colorectal cancer to arginine deprivation therapy is shaped by differential expression of urea cycle enzymes. Sci. Rep. 8, 12096 (2018).
Yang, J. et al. High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites. Gastroenterology 162, 135–149.e2 (2022).
Xu, Z. et al. Dysbiosis of human tumor microbiome and aberrant residence of actinomyces in tumor-associated fibroblasts in young-onset colorectal cancer. Front. Immunol. 13, 1008975 (2022).
Zwezerijnen-Jiwa, F. H., Sivov, H., Paizs, P., Zafeiropoulou, K. & Kinross, J. A systematic review of microbiome-derived biomarkers for early colorectal cancer detection. Neoplasia 36, 100868 (2022).
Hua, H. et al. Intestinal microbiota in colorectal adenoma-carcinoma sequence. Front. Med. 9, 888340 (2022).
Gates, T. J. et al. Fecal microbiota restoration modulates the microbiome in inflammation-driven colorectal cancer. Cancers 15, 2260 (2023).
Zhang, H. et al. Disease‐associated gut microbiome and critical metabolomic alterations in patients with colorectal cancer. Cancer Med. cam4.6194. https://doi.org/10.1002/cam4.6194 (2023).
Wang, N. & Fang, J.-Y. Fusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancer. Trends Microbiol. 31, 159–172 (2023).
Sobhani, I. et al. Colorectal cancer-associated microbiota contributes to oncogenic epigenetic signatures. Proc. Natl Acad. Sci. USA 116, 24285–24295 (2019).
Sun, J. & Kato, I. Gut microbiota, inflammation and colorectal cancer. Genes Dis. 3, 130–143 (2016).
Artemev, A., Naik, S., Pougno, A., Honnavar, P. & Shanbhag, N. M. The association of microbiome dysbiosis with colorectal cancer. Cureus 14, e22156 (2022).
Chen, Q. et al. Rubidium chloride modulated the fecal microbiota community in mice. BMC Microbiol. 21, 46 (2021).
Kim, D. J. et al. Colorectal cancer diagnostic model utilizing metagenomic and metabolomic data of stool microbial extracellular vesicles. Sci. Rep. 10, 2860 (2020).
Wu, J., Wu, M. & Wu, Q. Identification of potential metabolite markers for colon cancer and rectal cancer using serum metabolomics. J. Clin. Lab Anal. 34, e23333 (2020).
León-Letelier, R. A. et al. Contributions of the microbiome-derived metabolome for risk assessment and prognostication of pancreatic cancer. Clin. Chem. 70, 102–115 (2024).
Swanton, C. et al. Embracing cancer complexity: hallmarks of systemic disease. Cell 187, 1589–1616 (2024).
Singh, A. et al. DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics 35, 3055–3062 (2019).
Cai, Z., Poulos, R. C., Liu, J. & Zhong, Q. Machine learning for multi-omics data integration in cancer. iScience 25, 103798 (2022).
Schmidt, D. R. et al. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J. Clin. 71, 333–358 (2021).
Liu, L. & Shah, K. The potential of the gut microbiome to reshape the cancer therapy paradigm: a review. JAMA Oncol. 8, 1059 (2022).
Routy, B. et al. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial. Nat. Med. https://doi.org/10.1038/s41591-023-02453-x (2023).
West Coast Metabolomics Center—Assays and Services. https://metabolomics.ucdavis.edu/core-services/assays-and-services.
West Coast Metabolomics Center—Metabolites. https://metabolomics.ucdavis.edu/core-services/metabolites.
Fiehn, O. Metabolomics by gas chromatography-mass spectrometry: combined targeted and untargeted profiling. Curr. Protoc. Mol. Biol. 114, 30.4.1–30.4.32 (2016).
Aboud, O. et al. Application of machine learning to metabolomic profile characterization in glioblastoma patients undergoing concurrent chemoradiation. Metabolites 13, 299 (2023).
Ismail, I. T. et al. Sugar alcohols have a key role in pathogenesis of chronic liver disease and hepatocellular carcinoma in whole blood and liver tissues. Cancers 12, 484 (2020).
Miyamoto, S. et al. Systemic metabolomic changes in blood samples of lung cancer patients identified by gas chromatography time-of-flight mass spectrometry. Metabolites 5, 192–210 (2015).
Krishnapuram, B., Carin, L., Figueiredo, M. A. T. & Hartemink, A. J. Sparse multinomial logistic regression: fast algorithms and generalization bounds. IEEE Trans. Pattern Anal. Mach. Intell. 27, 957–968 (2005).
Chambers, L. M. et al. Disruption of the gut microbiota confers cisplatin resistance in epithelial ovarian cancer. Cancer Res. 82, 4654–4669 (2022).
Weiss, K. et al. Barrier housing and gender effects on allergic airway disease in a murine house dust mite model. Immunohorizons 5, 33–47 (2021).
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery Rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).
R: The R Project for Statistical Computing. https://www.r-project.org/.
Sangwan, N. & Khorana, A. Distinct intratumoral microbiome of young-onset and average-onset colorectal cancer [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10401639 (2023).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41698-024-00647-1