Multi-omics approaches to decipher the interactions of nanoparticles and biological systems

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article 

    Google Scholar
     

  • Yardley, D. A. nab-Paclitaxel mechanisms of action and delivery. J. Control. Rel. 170, 365–372 (2013).

    Article 

    Google Scholar
     

  • Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. https://doi.org/10.1038/natrevmats.2016.14 (2016).

  • Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566 (2020).

    Article 

    Google Scholar
     

  • Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article 

    Google Scholar
     

  • Ouyang, B. et al. Impact of tumor barriers on nanoparticle delivery to macrophages. Mol. Pharm. 19, 1917–1925 (2022).

    Article 

    Google Scholar
     

  • Jiang, W. et al. Designing nanomedicine for immuno-oncology. Nat. Biomed. Eng. 1, 0029 (2017).

    Article 

    Google Scholar
     

  • Nguyen, L. N. M. et al. The exit of nanoparticles from solid tumours. Nat. Mater. 22, 1261–1272 (2023).

    Article 

    Google Scholar
     

  • Jiang, W., Kim, B. Y., Rutka, J. T. & Chan, W. C. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3, 145–150 (2008).

    Article 

    Google Scholar
     

  • Hatit, M. Z. C. et al. Species-dependent in vivo mRNA delivery and cellular responses to nanoparticles. Nat. Nanotechnol. 17, 310–318 (2022).

    Article 

    Google Scholar
     

  • Horie, M., Kato, H., Fujita, K., Endoh, S. & Iwahashi, H. In vitro evaluation of cellular response induced by manufactured nanoparticles. Chem. Res. Toxicol. 25, 605–619 (2012).

    Article 

    Google Scholar
     

  • Jiang, W., Wang, Y., Wargo, J. A., Lang, F. F. & Kim, B. Y. S. Considerations for designing preclinical cancer immune nanomedicine studies. Nat. Nanotechnol. 16, 6–15 (2021).

    Article 

    Google Scholar
     

  • Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017).

    Article 

    Google Scholar
     

  • Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695–713 (2023).

    Article 

    Google Scholar
     

  • Cai, R. et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections. Nat. Neurosci. 22, 317–327 (2019).

    Article 

    Google Scholar
     

  • Mai, H. et al. Whole-body cellular mapping in mouse using standard IgG antibodies. Nat. Biotechnol. 42, 617–627 (2023).

    Article 

    Google Scholar
     

  • Kuett, L. et al. Three-dimensional imaging mass cytometry for highly multiplexed molecular and cellular mapping of tissues and the tumor microenvironment. Nat. Cancer 3, 122–133 (2022).

    Article 

    Google Scholar
     

  • Hauser, M. et al. Correlative super-resolution microscopy: new dimensions and new opportunities. Chem. Rev. 117, 7428–7456 (2017).

    Article 

    Google Scholar
     

  • Navikas, V. et al. Correlative 3D microscopy of single cells using super-resolution and scanning ion-conductance microscopy. Nat. Commun. 12, 4565 (2021).

    Article 

    Google Scholar
     

  • Grandi, F. C., Modi, H., Kampman, L. & Corces, M. R. Chromatin accessibility profiling by ATAC-seq. Nat. Protoc. 17, 1518–1552 (2022).

    Article 

    Google Scholar
     

  • Wang, M. et al. Single-nucleus multi-omic profiling of human placental syncytiotrophoblasts identifies cellular trajectories during pregnancy. Nat. Genet. 56, 294–305 (2024).

    Article 

    Google Scholar
     

  • Hu, Y. et al. Simultaneous profiling of transcriptome and DNA methylome from a single cell. Genome Biol. 17, 88 (2016).

    Article 

    Google Scholar
     

  • Hou, Y. et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 26, 304–319 (2016).

    Article 

    Google Scholar
     

  • Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981.e15 (2018).

    Article 

    Google Scholar
     

  • Black, S. et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat. Protoc. 16, 3802–3835 (2021).

    Article 

    Google Scholar
     

  • Rao, A., Barkley, D., Franca, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).

    Article 

    Google Scholar
     

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article 

    Google Scholar
     

  • Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat. Commun. 13, 1739 (2022).

    Article 

    Google Scholar
     

  • Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e21 (2022).

    Article 

    Google Scholar
     

  • Xiao, Z. et al. 3D reconstruction of a gastrulating human embryo. Cell 187, 2855–2874.e19 (2024).

    Article 

    Google Scholar
     

  • Simeth, J. et al. Virtual tissue expression analysis. Preprint at bioRxiv https://doi.org/10.1101/2023.11.16.567357 (2023).

  • Vicari, M. et al. Spatial multimodal analysis of transcriptomes and metabolomes in tissues. Nat. Biotechnol. 42, 1046–1050 (2023).

    Article 

    Google Scholar
     

  • Zhang, D. et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature 616, 113–122 (2023).

    Article 

    Google Scholar
     

  • Zhang, B. et al. Proteogenomic characterization of human colon and rectal cancer. Nature 513, 382–387 (2014).

    Article 

    Google Scholar
     

  • Larsson, A. J. M. et al. Genomic encoding of transcriptional burst kinetics. Nature 565, 251–254 (2019).

    Article 

    Google Scholar
     

  • Mund, A., Brunner, A. D. & Mann, M. Unbiased spatial proteomics with single-cell resolution in tissues. Mol. Cell 82, 2335–2349 (2022).

    Article 

    Google Scholar
     

  • Graves, P. R. & Haystead, T. A. Molecular biologist’s guide to proteomics. Microbiol. Mol. Biol. Rev. 66, 39–63 (2002).

    Article 

    Google Scholar
     

  • Bennett, H. M., Stephenson, W., Rose, C. M. & Darmanis, S. Single-cell proteomics enabled by next-generation sequencing or mass spectrometry. Nat. Methods 20, 363–374 (2023).

    Article 

    Google Scholar
     

  • Woo, J. et al. High-throughput and high-efficiency sample preparation for single-cell proteomics using a nested nanowell chip. Nat. Commun. 12, 6246 (2021).

    Article 

    Google Scholar
     

  • Ahmad, R. & Budnik, B. A review of the current state of single-cell proteomics and future perspective. Anal. Bioanal. Chem. 415, 6889–6899 (2023).

    Article 

    Google Scholar
     

  • Norris, J. L. & Caprioli, R. M. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem. Rev. 113, 2309–2342 (2013).

    Article 

    Google Scholar
     

  • Mund, A. et al. Deep visual proteomics defines single-cell identity and heterogeneity. Nat. Biotechnol. 40, 1231–1240 (2022).

    Article 

    Google Scholar
     

  • Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article 

    Google Scholar
     

  • Liu, Y. et al. High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq. Nat. Biotechnol. 41, 1405–1409 (2023).

    Article 

    Google Scholar
     

  • Clish, C. B. Metabolomics: an emerging but powerful tool for precision medicine. Cold Spring Harb. Mol. Case Stud. 1, a000588 (2015).

    Article 

    Google Scholar
     

  • Yang, K. & Han, X. Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem. Sci. 41, 954–969 (2016).

    Article 

    Google Scholar
     

  • Mapstone, M. et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat. Med. 20, 415–418 (2014).

    Article 

    Google Scholar
     

  • Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).

    Article 

    Google Scholar
     

  • Mayers, J. R. et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat. Med. 20, 1193–1198 (2014).

    Article 

    Google Scholar
     

  • Johnson, C. H., Ivanisevic, J. & Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 17, 451–459 (2016).

    Article 

    Google Scholar
     

  • Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M. & Weissman, J. S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 7, 1534–1550 (2012).

    Article 

    Google Scholar
     

  • Wang, T. et al. Translating mRNAs strongly correlate to proteins in a multivariate manner and their translation ratios are phenotype specific. Nucleic Acids Res. 41, 4743–4754 (2013).

    Article 

    Google Scholar
     

  • Zhao, J., Qin, B., Nikolay, R., Spahn, C. M. T. & Zhang, G. Translatomics: the global view of translation. Int. J. Mol. Sci. 20, e20010212 (2019).


    Google Scholar
     

  • Ozadam, H. et al. Single-cell quantification of ribosome occupancy in early mouse development. Nature 618, 1057–1064 (2023).

    Article 

    Google Scholar
     

  • Zeng, H. et al. Spatially resolved single-cell translatomics at molecular resolution. Science 380, eadd3067 (2023).

    Article 

    Google Scholar
     

  • Guo, Y., Yan, S. & Zhang, W. Translatomics to explore dynamic differences in immunocytes in the tumor microenvironment. Mol. Ther. Nucleic Acids 34, 102037 (2023).

    Article 

    Google Scholar
     

  • Li, S. D. & Huang, L. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 5, 496–504 (2008).

    Article 

    Google Scholar
     

  • Kulkarni, S. A. & Feng, S. S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm. Res. 30, 2512–2522 (2013).

    Article 

    Google Scholar
     

  • Li, R. et al. Therapeutically reprogrammed nutrient signalling enhances nanoparticulate albumin bound drug uptake and efficacy in KRAS-mutant cancer. Nat. Nanotechnol. 16, 830–839 (2021).

    Article 

    Google Scholar
     

  • Chen, Y. et al. Therapeutic remodeling of the tumor microenvironment enhances nanoparticle delivery. Adv. Sci. 6, 1802070 (2019).

    Article 

    Google Scholar
     

  • Sheth, V. et al. Quantifying intracellular nanoparticle distributions with three-dimensional super-resolution microscopy. ACS Nano 17, 8376–8392 (2023).

    Article 

    Google Scholar
     

  • Andrian, T. et al. Super-resolution correlative light-electron microscopy using a click-chemistry approach for studying intracellular trafficking. Methods Cell Biol. 162, 303–331 (2021).

    Article 

    Google Scholar
     

  • Samrot, A. V., Sahithya, C. S., Selvarani, J. A., Purayil, S. K. & Ponnaiah, P. A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles. Curr. Res. Green Sustain. Chem. 4, 100042 (2021).

    Article 

    Google Scholar
     

  • Stepanenko, O. V. et al. Comparative studies on the structure and stability of fluorescent proteins EGFP, zFP506, mRFP1, “dimer2”, and DsRed1. Biochemistry 43, 14913–14923 (2004).

    Article 

    Google Scholar
     

  • Campbell, B. C., Paez-Segala, M. G., Looger, L. L., Petsko, G. A. & Liu, C. F. Chemically stable fluorescent proteins for advanced microscopy. Nat. Methods 19, 1612–1621 (2022).

    Article 

    Google Scholar
     

  • Gordon, S. & Taylor, P. R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953–964 (2005).

    Article 

    Google Scholar
     

  • Dobrowolski, C. et al. Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery. Nat. Nanotechnol. 17, 871–879 (2022). This article reports DNA-barcoded nanoparticles to screen for factors related to lipid nanoparticle delivery of mRNA at single-cell resolution.

    Article 

    Google Scholar
     

  • Wang, Y. et al. Age-associated disparity in phagocytic clearance affects the efficacy of cancer nanotherapeutics. Nat. Nanotechnol. 19, 255–263 (2024). This article shows that liver clearance of nanoparticles declines with age owing to a change in liver macrophage population during ageing.

    Article 

    Google Scholar
     

  • Boehnke, N. et al. Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery. Science 377, eabm5551 (2022). This article reports the screening of a library of different nanoparticles and barcoded cell lines, identifying the core materials and surface modifications of nanoparticles influencing their cellular uptake.

    Article 

    Google Scholar
     

  • La-Beck, N. M. et al. Factors affecting the pharmacokinetics of pegylated liposomal doxorubicin in patients. Cancer Chemother. Pharmacol. 69, 43–50 (2012).

    Article 

    Google Scholar
     

  • Serpooshan, V. et al. Effect of cell sex on uptake of nanoparticles: the overlooked factor at the nanobio interface. ACS Nano 12, 2253–2266 (2018).

    Article 

    Google Scholar
     

  • Mahmoudi, N. et al. Sex-specific nanomedicine- and biomaterials-based therapies of chronic wounds. Nat. Rev. Bioeng. 2, 447–449 (2024). This article discusses sex differences in chronic wound healing and the design of sex-specific biomaterials for chronic wound treatment.

    Article 

    Google Scholar
     

  • He, Y., Wang, Y., Wang, L., Jiang, W. & Wilhelm, S. Understanding nanoparticle-liver interactions in nanomedicine. Expert Opin. Drug Deliv. 21, 829–843 (2024).

    Article 

    Google Scholar
     

  • Tabula Sapiens, C. et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article 

    Google Scholar
     

  • Saeed, S. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345, 1251086 (2014).

    Article 

    Google Scholar
     

  • Hall, E. et al. Sex differences in the genome-wide DNA methylation pattern and impact on gene expression, microRNA levels and insulin secretion in human pancreatic islets. Genome Biol. 15, 522 (2014).

    Article 

    Google Scholar
     

  • Kundakovic, M. & Tickerhoof, M. Epigenetic mechanisms underlying sex differences in the brain and behavior. Trends Neurosci. 47, 18–35 (2024).

    Article 

    Google Scholar
     

  • Pal, S. & Tyler, J. K. Epigenetics and aging. Sci. Adv. 2, e1600584 (2016).

    Article 

    Google Scholar
     

  • Ng, C. T. et al. The induction of epigenetic regulation of PROS1 gene in lung fibroblasts by gold nanoparticles and implications for potential lung injury. Biomaterials 32, 7609–7615 (2011).

    Article 

    Google Scholar
     

  • Zhao, X., Toyooka, T. & Ibuki, Y. Silver nanoparticle-induced phosphorylation of histone H3 at serine 10 is due to dynamic changes in actin filaments and the activation of Aurora kinases. Toxicol. Lett. 276, 39–47 (2017).

    Article 

    Google Scholar
     

  • Sanei, M., Amirheidari, B. & Satarzadeh, N. Mutuality of epigenetic and nanoparticles: two sides of a coin. Heliyon 10, e23679 (2024).

    Article 

    Google Scholar
     

  • Lahnemann, D. et al. Eleven grand challenges in single-cell data science. Genome Biol. 21, 31 (2020).

    Article 

    Google Scholar
     

  • Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20, 273–282 (2019).

    Article 

    Google Scholar
     

  • Wang, L. et al. Exploring and analyzing the systemic delivery barriers for nanoparticles. Adv. Funct. Mater. 34, 2308446 (2023).

    Article 

    Google Scholar
     

  • Manco, R. & Itzkovitz, S. Liver zonation. J. Hepatol. 74, 466–468 (2021).

    Article 

    Google Scholar
     

  • Kietzmann, T. Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol. 11, 622–630 (2017).

    Article 

    Google Scholar
     

  • Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 185, 379–396.e38 (2022). This article identifies spatially resolved niches of different liver macrophage populations.

    Article 

    Google Scholar
     

  • Matusiak, M. et al. Spatially segregated macrophage populations predict distinct outcomes in colon cancer. Cancer Discov. 14, 1418–1439 (2024). This article reports that tumour-associated macrophages at different spatial locations have distinct functions, which can be related to disease outcomes.

    Article 

    Google Scholar
     

  • Wang, W. et al. Identification of hypoxic macrophages in glioblastoma with therapeutic potential for vasculature normalization. Cancer Cell 42, 815–832.e12 (2024).

    Article 

    Google Scholar
     

  • Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).

    Article 

    Google Scholar
     

  • Lee, D., Huntoon, K., Lux, J., Kim, B. Y. S. & Jiang, W. Engineering nanomaterial physical characteristics for cancer immunotherapy. Nat. Rev. Bioeng. 1, 499–517 (2023). This article discusses how the physical characteristics of nanomaterials affect immunological outcomes in cells.

    Article 

    Google Scholar
     

  • Ngo, W. et al. Identifying cell receptors for the nanoparticle protein corona using genome screens. Nat. Chem. Biol. 18, 1023–1031 (2022).

    Article 

    Google Scholar
     

  • Hsiao, I. L. et al. Quantification and visualization of cellular uptake of TiO2 and Ag nanoparticles: comparison of different ICP-MS techniques. J. Nanobiotechnol. 14, 50 (2016).

    Article 

    Google Scholar
     

  • Wang, H. et al. Study on uptake of gold nanoparticles by single cells using droplet microfluidic chip-inductively coupled plasma mass spectrometry. Talanta 200, 398–407 (2019).

    Article 

    Google Scholar
     

  • Donahue, N. D. et al. Absolute quantification of nanoparticle interactions with individual human B cells by single cell mass spectrometry. Nano Lett. 22, 4192–4199 (2022).

    Article 

    Google Scholar
     

  • Gatto, L. et al. Initial recommendations for performing, benchmarking and reporting single-cell proteomics experiments. Nat. Methods 20, 375–386 (2023).

    Article 

    Google Scholar
     

  • Zhu, Z. J., Ghosh, P. S., Miranda, O. R., Vachet, R. W. & Rotello, V. M. Multiplexed screening of cellular uptake of gold nanoparticles using laser desorption/ionization mass spectrometry. J. Am. Chem. Soc. 130, 14139–14143 (2008).

    Article 

    Google Scholar
     

  • Gioria, S. et al. Proteomics study of silver nanoparticles on Caco-2 cells. Toxicol. In Vitro 50, 347–372 (2018).

    Article 

    Google Scholar
     

  • Verano-Braga, T. et al. Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics. ACS Nano 8, 2161–2175 (2014).

    Article 

    Google Scholar
     

  • Ashkarran, A. A. et al. Measurements of heterogeneity in proteomics analysis of the nanoparticle protein corona across core facilities. Nat. Commun. 13, 6610 (2022).

    Article 

    Google Scholar
     

  • Ostroff, R. et al. The stability of the circulating human proteome to variations in sample collection and handling procedures measured with an aptamer-based proteomics array. J. Proteom. 73, 649–666 (2010).

    Article 

    Google Scholar
     

  • Faserl, K., Chetwynd, A. J., Lynch, I., Thorn, J. A. & Lindner, H. H. Corona isolation method matters: capillary electrophoresis mass spectrometry based comparison of protein corona compositions following on-particle versus in-solution or in-gel digestion. Nanomaterials https://doi.org/10.3390/nano9060898 (2019).

  • Horník, Š. et al. Effects of workers exposure to nanoparticles studied by NMR metabolomics. Appl. Sci. 11, 6601 (2021).

    Article 

    Google Scholar
     

  • He, X. et al. Metabolomics of V2O5 nanoparticles and V2O5 nanofibers in human airway epithelial BEAS-2B cells. Toxicol. Appl. Pharmacol. 459, 116327 (2023).

    Article 

    Google Scholar
     

  • Bannuscher, A. et al. Metabolomics profiling to investigate nanomaterial toxicity in vitro and in vivo. Nanotoxicology 14, 807–826 (2020).

    Article 

    Google Scholar
     

  • Tang, H. et al. Cholesterol modulates the physiological response to nanoparticles by changing the composition of protein corona. Nat. Nanotechnol. 18, 1067–1077 (2023).

    Article 

    Google Scholar
     

  • Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article 

    Google Scholar
     

  • Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 1873–1887.e17 (2019).

    Article 

    Google Scholar
     

  • Cao, Z. J. & Gao, G. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding. Nat. Biotechnol. 40, 1458–1466 (2022).

    Article 

    Google Scholar
     

  • Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).

    Article 

    Google Scholar
     

  • Athieniti, E. & Spyrou, G. M. A guide to multi-omics data collection and integration for translational medicine. Comput. Struct. Biotechnol. J. 21, 134–149 (2023).

    Article 

    Google Scholar
     

  • Aberg, C., Piattelli, V., Montizaan, D. & Salvati, A. Sources of variability in nanoparticle uptake by cells. Nanoscale 13, 17530–17546 (2021).

    Article 

    Google Scholar
     

  • Lin, Z. P. et al. Macrophages actively transport nanoparticles in tumors after extravasation. ACS Nano 16, 6080–6092 (2022).

    Article 

    Google Scholar
     

  • Behzadi, S. et al. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017).

    Article 

    Google Scholar
     

  • Zhang, F. et al. Multistage signal-interactive nanoparticles improve tumor targeting through efficient nanoparticle-cell communications. Cell Rep. 35, 109131 (2021).

    Article 

    Google Scholar
     

  • Ultimo, A. et al. Nanoparticle-cell-nanoparticle communication by stigmergy to enhance poly(I:C) induced apoptosis in cancer cells. Chem. Commun. 56, 7273–7276 (2020).

    Article 

    Google Scholar
     

  • Chai, J., Zeng, H., Li, A. & Ngai, E. W. T. Deep learning in computer vision: a critical review of emerging techniques and application scenarios. Mach. Learn. Appl. 6, 100134 (2021).


    Google Scholar
     

  • Zhu, M. et al. Machine-learning-assisted single-vessel analysis of nanoparticle permeability in tumour vasculatures. Nat. Nanotechnol. 18, 657–666 (2023). This article reports the use of computer vision and machine learning to quantify and analyse the tumour vasculature and delivery of nanoparticles.

    Article 

    Google Scholar
     

  • Harrison, P. J. et al. Deep-learning models for lipid nanoparticle-based drug delivery. Nanomedicine 16, 1097–1110 (2021).

    Article 

    Google Scholar
     

  • Kang, M., Ko, E. & Mersha, T. B. A roadmap for multi-omics data integration using deep learning. Brief. Bioinform. 23, bbab454 (2022).

    Article 

    Google Scholar
     

  • Li, R. & Yang, X. De novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data with DeepLinc. Genome Biol. 23, 124 (2022).

    Article 

    Google Scholar
     

  • Zhang, Z. et al. Graph neural network approaches for drug-target interactions. Curr. Opin. Struct. Biol. 73, 102327 (2022).

    Article 

    Google Scholar
     

  • Mastropietro, A., Pasculli, G. & Bajorath, J. Learning characteristics of graph neural networks predicting protein-ligand affinities. Nat. Mach. Intell. 5, 1427–1436 (2023).

    Article 

    Google Scholar
     

  • Saldinger, J. C., Raymond, M., Elvati, P. & Violi, A. Domain-agnostic predictions of nanoscale interactions in proteins and nanoparticles. Nat. Comput. Sci. 3, 393–402 (2023).

    Article 

    Google Scholar
     

  • Xu, Y. et al. AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery. Nat. Commun. 15, 6305 (2024).

    Article 

    Google Scholar
     

  • Wen, H. et al. Graph neural networks for multimodal single-cell data integration. In Proc. 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining 4153–4163 (2022).

  • Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

    Article 

    Google Scholar
     

  • Lutz, I. D. et al. Top-down design of protein architectures with reinforcement learning. Science 380, 266–273 (2023). This article reports the use of reinforced learning to design new complex protein nanomaterials with desired properties.

    Article 

    Google Scholar
     

  • Repecka, D. et al. Expanding functional protein sequence spaces using generative adversarial networks. Nat. Mach. Intell. 3, 324–333 (2021).

    Article 

    Google Scholar
     

  • Korshunova, M. et al. Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds. Commun. Chem. 5, 129 (2022).

    Article 

    Google Scholar
     

  • Popova, M., Isayev, O. & Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv. 4, eaap7885 (2018).

    Article 

    Google Scholar
     

  • Jyakhwo, S., Serov, N., Dmitrenko, A. & Vinogradov, V. V. Machine learning reinforced genetic algorithm for massive targeted discovery of selectively cytotoxic inorganic nanoparticles. Small 20, e2305375 (2024).

    Article 

    Google Scholar
     

  • May, J. N. et al. Histopathological biomarkers for predicting the tumour accumulation of nanomedicines. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01197-4 (2024). This article reports the use of supervised machine learning to train an AI model that uses biological factors to predict the tumour delivery of nanoparticles.

  • Wang, Y., Schrank, B. R., Jiang, W. & Kim, B. Y. S. Learning what keeps nanomedicines in tumours. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01251-1 (2024).

  • Arora, A. & Arora, A. Generative adversarial networks and synthetic patient data: current challenges and future perspectives. Future Healthc. J. 9, 190–193 (2022).

    Article 

    Google Scholar
     

  • Kuo, N. I. et al. Generating synthetic clinical data that capture class imbalanced distributions with generative adversarial networks: example using antiretroviral therapy for HIV. J. Biomed. Inf. 144, 104436 (2023).

    Article 

    Google Scholar
     

  • Lazarovits, J. et al. Supervised learning and mass spectrometry predicts the in vivo fate of nanomaterials. ACS Nano 13, 8023–8034 (2019).

    Article 

    Google Scholar
     

  • Wang, C., Lue, W., Kaalia, R., Kumar, P. & Rajapakse, J. C. Network-based integration of multi-omics data for clinical outcome prediction in neuroblastoma. Sci. Rep. 12, 15425 (2022).

    Article 

    Google Scholar
     

  • Higdon, R. et al. The promise of multi-omics and clinical data integration to identify and target personalized healthcare approaches in autism spectrum disorders. OMICS 19, 197–208 (2015).

    Article 

    Google Scholar
     

  • Shen, W. X. et al. AggMapNet: enhanced and explainable low-sample omics deep learning with feature-aggregated multi-channel networks. Nucleic Acids Res. 50, e45 (2022).

    Article 

    Google Scholar
     

  • Koppad, S., B, A., Gkoutos, G. V. & Acharjee, A. Cloud computing enabled big multi-omics data analytics. Bioinform Biol. Insights 15, 11779322211035921 (2021).

    Article 

    Google Scholar
     

  • Chen, X., Wang, C., Tang, S., Yu, C. & Zou, Q. CMSA: a heterogeneous CPU/GPU computing system for multiple similar RNA/DNA sequence alignment. BMC Bioinform. 18, 315 (2017).

    Article 

    Google Scholar
     

  • Hajipour, M. J. et al. Sex as an important factor in nanomedicine. Nat. Commun. 12, 2984 (2021).

    Article 

    Google Scholar
     

  • Liu, Y., Zhou, J. & White, K. P. RNA-seq differential expression studies: more sequence or more replication. Bioinformatics 30, 301–304 (2014).

    Article 

    Google Scholar
     

  • Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896–902 (2014).

    Article 

    Google Scholar
     

  • Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 114, 2060–2065 (2017).

    Article 

    Google Scholar
     

  • Wei, W., Lu, H., Dai, W., Zheng, X. & Dong, H. Multiplexed organelles portrait barcodes for subcellular microRNA array detection in living cells. ACS Nano 16, 20329–20339 (2022).

    Article 

    Google Scholar
     

  • Rhym, L. H., Manan, R. S., Koller, A., Stephanie, G. & Anderson, D. G. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat. Biomed. Eng. 7, 901–910 (2023).

    Article 

    Google Scholar
     

  • Xue, L. et al. High-throughput barcoding of nanoparticles identifies cationic, degradable lipid-like materials for mRNA delivery to the lungs in female preclinical models. Nat. Commun. 15, 1884 (2024).

    Article 

    Google Scholar
     

  • Victorious, A., Saha, S., Pandey, R. & Soleymani, L. Enhancing the sensitivity of photoelectrochemical DNA biosensing using plasmonic DNA barcodes and differential signal readout. Angew. Chem. Int. Ed. 60, 7316–7322 (2021).

    Article 

    Google Scholar
     

  • Edwardson, T. G., Lau, K. L., Bousmail, D., Serpell, C. J. & Sleiman, H. F. Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nat. Chem. 8, 162–170 (2016).

    Article 

    Google Scholar
     

  • Zhao, J. et al. Core–shell silica nanoparticle-based barcodes combined with a hybridization chain reaction for multiplex quantitative detection of bacterial drug-resistance genes. ACS Appl. Nano Mater. 6, 23114–23121 (2023).

    Article 

    Google Scholar
     

  • Yang, Y. S. et al. High-throughput quantitation of inorganic nanoparticle biodistribution at the single-cell level using mass cytometry. Nat. Commun. 8, 14069 (2017).

    Article 

    Google Scholar
     

  • Hofmann, D. et al. Mass spectrometry and imaging analysis of nanoparticle-containing vesicles provide a mechanistic insight into cellular trafficking. ACS Nano 8, 10077–10088 (2014).

    Article 

    Google Scholar
     

  • Ouyang, B. et al. The dose threshold for nanoparticle tumour delivery. Nat. Mater. 19, 1362–1371 (2020).

    Article 

    Google Scholar
     

  • Chen, J. et al. Sex differences in the toxicity of polyethylene glycol-coated gold nanoparticles in mice. Int. J. Nanomed. 8, 2409–2419 (2013).


    Google Scholar
     

  • Han, H. Y. et al. Amorphous silica nanoparticle-induced pulmonary inflammatory response depends on particle size and is sex-specific in rats. Toxicol. Appl. Pharmacol. 390, 114890 (2020).

    Article 

    Google Scholar
     

  • Zamboni, W. C. et al. Bidirectional pharmacodynamic interaction between pegylated liposomal CKD-602 (S-CKD602) and monocytes in patients with refractory solid tumors. J. Liposome Res. 21, 158–165 (2011).

    Article 

    Google Scholar
     

  • Steppan, J. et al. Commonly used mouse strains have distinct vascular properties. Hypertens. Res. 43, 1175–1181 (2020).

    Article 

    Google Scholar
     

  • Corder, K. M., Hoffman, J. M., Sogorovic, A. & Austad, S. N. Behavioral comparison of the C57BL/6 inbred mouse strain and their CB6F1 siblings. Behav. Process. 207, 104836 (2023).

    Article 

    Google Scholar
     

  • Montgomery, M. K. et al. Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 56, 1129–1139 (2013).

    Article 

    Google Scholar
     

  • Hamilton, R. F. Jr, Thakur, S. A., Mayfair, J. K. & Holian, A. MARCO mediates silica uptake and toxicity in alveolar macrophages from C57BL/6 mice. J. Biol. Chem. 281, 34218–34226 (2006).

    Article 

    Google Scholar