Modelling host–microbiome interactions in organ-on-a-chip platforms – Nature Reviews Bioengineering

  • Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    Article  Google Scholar 

  • Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).

    Article  Google Scholar 

  • Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    Article  Google Scholar 

  • Schluter, J. & Foster, K. R. The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biol. 10, e1001424 (2012).

    Article  Google Scholar 

  • Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M. & Owen, L. J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26, 26191 (2015).

    Google Scholar 

  • Doestzada, M. et al. Pharmacomicrobiomics: a novel route towards personalized medicine? Protein Cell 9, 432–445 (2018).

    Article  Google Scholar 

  • Nguyen, T. L. A., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 8, 1–16 (2015).

    Article  Google Scholar 

  • Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    Article  Google Scholar 

  • Chou, D. B. et al. On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat. Biomed. Eng. 4, 394–406 (2020).

    Article  Google Scholar 

  • Ghosh, S., Whitley, C. S., Haribabu, B. & Jala, V. R. Regulation of intestinal barrier function by microbial metabolites. Cell. Mol. Gastroenterol. Hepatol. 11, 1463–1482 (2021).

    Article  Google Scholar 

  • Levy, M., Kolodziejczyk, A. A., Thaiss, C. A. & Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 17, 219–232 (2017).

    Article  Google Scholar 

  • Waclawiková, B., Codutti, A., Alim, K. & El Aidy, S. Gut microbiota-motility interregulation: insights from in vivo, ex vivo and in silico studies. Gut Microbes 14, 1997296 (2022).

    Article  Google Scholar 

  • Pan, R. et al. Crosstalk between the gut microbiome and colonic motility in chronic constipation: potential mechanisms and microbiota modulation. Nutrients 14, 3704 (2022).

    Article  Google Scholar 

  • Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P. & Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3, 289–306 (2012).

    Article  Google Scholar 

  • Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).

    Article  Google Scholar 

  • Wahlström, A., Sayin, S. I., Marschall, H.-U. & Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

    Article  Google Scholar 

  • Haiser, H. J., Seim, K. L., Balskus, E. P. & Turnbaugh, P. J. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes 5, 233–238 (2014).

    Article  Google Scholar 

  • Powell, N., Walker, M. M. & Talley, N. J. The mucosal immune system: master regulator of bidirectional gut–brain communications. Nat. Rev. Gastroenterol. Hepatol. 14, 143–159 (2017).

    Article  Google Scholar 

  • Tripathi, A. et al. The gut–liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 15, 397–411 (2018).

    Article  Google Scholar 

  • Gerbaba, T. K., Green-Harrison, L. & Buret, A. G. Modeling host-microbiome interactions in Caenorhabditis elegans. J. Nematol. 49, 348–356 (2017).

    Article  Google Scholar 

  • Jia, P. P. et al. Role of germ-free animal models in understanding interactions of gut microbiota to host and environmental health: a special reference to zebrafish. Environ. Pollut. 279, 116925 (2021).

    Article  Google Scholar 

  • Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl Acad. Sci. USA 114, 4775–4780 (2017).

    Article  Google Scholar 

  • Kostic, A. D., Howitt, M. R. & Garrett, W. S. Exploring host–microbiota interactions in animal models and humans. Genes Dev. 27, 701–718 (2013).

    Article  Google Scholar 

  • Inoue, R. & Ushida, K. Development of the intestinal microbiota in rats and its possible interactions with the evolution of the luminal IgA in the intestine. FEMS Microbiol. Ecol. 45, 147–153 (2003).

    Article  Google Scholar 

  • Hildebrand, F. et al. A comparative analysis of the intestinal metagenomes present in guinea pigs (Cavia porcellus) and humans (Homo sapiens). BMC Genomics 13, 514 (2012).

    Article  Google Scholar 

  • Pilla, R. & Suchodolski, J. S. The role of the canine gut microbiome and metabolome in health and gastrointestinal disease. Front. Vet. Sci. 6, 498 (2020).

    Article  Google Scholar 

  • Patil, Y., Gooneratne, R. & Ju, X. H. Interactions between host and gut microbiota in domestic pigs: a review. Gut Microbes 11, 310–334 (2020).

    Article  Google Scholar 

  • Legrand, T., Wynne, J. W., Weyrich, L. S. & Oxley, A. P. A. Investigating both mucosal immunity and microbiota in response to gut enteritis in yellowtail kingfish. Microorganisms 8, 1267 (2020).

    Article  Google Scholar 

  • Slinger, J., Adams, M. B. & Wynne, J. W. Bacteriomic profiling of branchial lesions induced by Neoparamoeba perurans challenge reveals commensal dysbiosis and an association with Tenacibaculum dicentrarchi in AGD-affected Atlantic salmon (Salmo salar L.). Microorganisms 8, 1189 (2020).

    Article  Google Scholar 

  • Luo, J. J., Young, C. D., Zhou, H. M. & Wang, X. J. Mouse models for studying oral cancer: impact in the era of cancer immunotherapy. J. Dent. Res. 97, 683–690 (2018).

    Article  Google Scholar 

  • Catalone, B. J. et al. Mouse model of cervicovaginal toxicity and inflammation for preclinical evaluation of topical vaginal microbicides. Antimicrob. Agents Chemother. 48, 1837–1847 (2004).

    Article  Google Scholar 

  • Avci, P. et al. Animal models of skin disease for drug discovery. Expert Opin. Drug Discov. 8, 331–355 (2013).

    Article  Google Scholar 

  • Yin, H. et al. Fusobacterium nucleatum promotes liver metastasis in colorectal cancer by regulating the hepatic immune niche and altering gut microbiota. Aging 14, 1941–1958 (2022).

    Article  Google Scholar 

  • Ye, W. & Chen, Q. Potential applications and perspectives of humanized mouse models. Annu. Rev. Anim. Biosci. 10, 395–417 (2022).

    Article  Google Scholar 

  • Uzbay, T. Germ-free animal experiments in the gut microbiota studies. Curr. Opin. Pharmacol. 49, 6–10 (2019).

    Article  Google Scholar 

  • Staley, C. et al. Stable engraftment of human microbiota into mice with a single oral gavage following antibiotic conditioning. Microbiome 5, 87 (2017).

    Article  Google Scholar 

  • Fiebiger, U., Bereswill, S. & Heimesaat, M. M. Dissecting the interplay between intestinal microbiota and host immunity in health and disease: lessons learned from germfree and gnotobiotic animal models. Eur. J. Microbiol. Immunol. 6, 253–271 (2016).

    Article  Google Scholar 

  • Bhattarai, Y. & Kashyap, P. C. Germ-free mice model for studying host-microbial interactions. Methods Mol. Biol. 1438, 123–135 (2016).

    Article  Google Scholar 

  • Fontaine, C. A. et al. How free of germs is germ-free? Detection of bacterial contamination in a germ free mouse unit. Gut Microbes 6, 225–233 (2015).

    Article  Google Scholar 

  • Yissachar, N. et al. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell 168, 1135–1148 (2017).

    Article  Google Scholar 

  • Mondragón-Palomino, O. et al. Three-dimensional imaging for the quantification of spatial patterns in microbiota of the intestinal mucosa. Proc. Natl Acad. Sci. USA 119, e2118483119 (2022).

    Article  Google Scholar 

  • Hughes, D. L., Hughes, A., Soonawalla, Z., Mukherjee, S. & O’Neill, E. Dynamic physiological culture of ex vivo human tissue: a systematic review. Cancers 13, 2870 (2021).

    Article  Google Scholar 

  • Zhang, J. et al. Coculture of primary human colon monolayer with human gut bacteria. Nat. Protoc. 16, 3874–3900 (2021).

    Article  Google Scholar 

  • Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article  Google Scholar 

  • Günther, C., Winner, B., Neurath, M. F. & Stappenbeck, T. S. Organoids in gastrointestinal diseases: from experimental models to clinical translation. Gut 71, 1892–1908 (2022).

    Article  Google Scholar 

  • Kim, H. J., Huh, D., Hamilton, G. & Ingber, D. E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12, 2165–2174 (2012).

    Article  Google Scholar 

  • Poletti, M., Arnauts, K., Ferrante, M. & Korcsmaros, T. Organoid-based models to study the role of host-microbiota interactions in IBD. J. Crohns Colitis 15, 1222–1235 (2021).

    Article  Google Scholar 

  • Hill, D. R. et al. Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium. eLife 6, e29132 (2017).

    Article  Google Scholar 

  • King, S. M. et al. 3D proximal tubule tissues recapitulate key aspects of renal physiology to enable nephrotoxicity testing. Front. Physiol. 8, 123 (2017).

    Article  Google Scholar 

  • Costello, C. M. et al. 3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics. Mol. Pharm. 11, 2030–2039 (2014).

    Article  Google Scholar 

  • Dos Santos, J. F. et al. Mesenchymal stem cells express epidermal markers in an in vitro reconstructed human skin model. Front. Cell Dev. Biol. 10, 1012637 (2023).

    Article  Google Scholar 

  • Kim, R., Wang, Y., Sims, C. E. & Allbritton, N. L. A platform for co-culture of primary human colonic epithelium with anaerobic probiotic bacteria. Front. Bioeng. Biotechnol. 10, 890396 (2022).

    Article  Google Scholar 

  • Chen, Y. et al. Bioengineered 3D tissue model of intestine epithelium with oxygen gradients to sustain human gut microbiome. Adv. Healthc. Mater. 11, e2200447 (2022).

    Article  Google Scholar 

  • Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl Acad. Sci. USA 113, E7–E15 (2016).

    Google Scholar 

  • Shin, W. & Kim, H. J. 3D in vitro morphogenesis of human intestinal epithelium in a gut-on-a-chip or a hybrid chip with a cell culture insert. Nat. Protoc. 17, 910–939 (2022).

    Article  Google Scholar 

  • Shah, P. et al. A microfluidics-based in vitro model of the gastrointestinal human–microbe interface. Nat. Commun. 7, 11535 (2016).

    Article  Google Scholar 

  • Shin, Y. C. et al. Three-dimensional regeneration of patient-derived intestinal organoid epithelium in a physiodynamic mucosal interface-on-a-chip. Micromachines 11, 663 (2020).

    Article  Google Scholar 

  • Waheed, S. et al. 3D printed microfluidic devices: enablers and barriers. Lab Chip 16, 1993–2013 (2016).

    Article  Google Scholar 

  • Walsh, D. I., Kong, D. S., Murthy, S. K. & Carr, P. A. Enabling microfluidics: from clean rooms to makerspaces. Trends Biotechnol. 35, 383–392 (2017).

    Article  Google Scholar 

  • Kim, H. J. & Ingber, D. E. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 5, 1130–1140 (2013).

    Article  Google Scholar 

  • Sunuwar, L. et al. Mechanical stimuli affect Escherichia coli heat-stable enterotoxin-cyclic GMP signaling in a human enteroid intestine-chip model. Infect. Immun. 88, e00866–19 (2020).

    Article  Google Scholar 

  • Shin, W., Hinojosa, C. D., Ingber, D. E. & Kim, H. J. Human intestinal morphogenesis controlled by transepithelial morphogen gradient and flow-dependent physical cues in a microengineered gut-on-a-chip. iScience 15, 391–406 (2019).

    Article  Google Scholar 

  • Maurer, M. et al. A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies. Biomaterials 220, 119396 (2019).

    Article  Google Scholar 

  • Shin, W., Su, Z., Yi, S. S. & Kim, H. J. Single-cell transcriptomic mapping of intestinal epithelium that undergoes 3D morphogenesis and mechanodynamic stimulation in a gut-on-a-chip. iScience 25, 105521 (2022).

    Article  Google Scholar 

  • Min, S. et al. Live probiotic bacteria administered in a pathomimetic Leaky Gut Chip ameliorate impaired epithelial barrier and mucosal inflammation. Sci. Rep. 12, 22641 (2022).

    Article  Google Scholar 

  • Shin, W. et al. A robust longitudinal co-culture of obligate anaerobic gut microbiome with human intestinal epithelium in an anoxic-oxic interface-on-a-chip. Front. Bioeng. Biotechnol. 7, 13 (2019).

    Article  Google Scholar 

  • Shuler, M. L., Kargi, F. & DeLisa, M. Bioprocess Engineering: Basic Concepts 3rd edn (Pearson, 2017).

  • Lee, K. S., Boccazzi, P., Sinskey, A. J. & Ram, R. J. Microfluidic chemostat and turbidostat with flow rate, oxygen, and temperature control for dynamic continuous culture. Lab Chip 11, 1730–1739 (2011).

    Article  Google Scholar 

  • Singh, S., Natalini, J. G. & Segal, L. N. Lung microbial-host interface through the lens of multi-omics. Mucosal Immunol. 15, 837–845 (2022).

    Article  Google Scholar 

  • Henneberg, S. et al. Antibody-guided in vivo imaging of Aspergillus fumigatus lung infections during antifungal azole treatment. Nat. Commun. 12, 1707 (2021).

    Article  Google Scholar 

  • Houghton, L. A., Lee, A. S., Badri, H., DeVault, K. R. & Smith, J. A. Respiratory disease and the oesophagus: reflux, reflexes and microaspiration. Nat. Rev. Gastroenterol. Hepatol. 13, 445–460 (2016).

    Article  Google Scholar 

  • Legner, M., McMillen, D. R. & Cvitkovitch, D. G. Role of dilution rate and nutrient availability in the formation of microbial biofilms. Front. Microbiol. 10, 916 (2019).

    Article  Google Scholar 

  • Mahnic, A., Auchtung, J. M., Poklar Ulrih, N., Britton, R. A. & Rupnik, M. Microbiota in vitro modulated with polyphenols shows decreased colonization resistance against Clostridioides difficile but can neutralize cytotoxicity. Sci. Rep. 10, 8358 (2020).

    Article  Google Scholar 

  • Gayer, C. P. & Basson, M. D. The effects of mechanical forces on intestinal physiology and pathology. Cell. Signal. 21, 1237–1244 (2009).

    Article  Google Scholar 

  • Zheng, L., Kelly, C. J. & Colgan, S. P. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: cellular responses to hypoxia. Am. J. Physiol. Cell Physiol. 309, C350–C360 (2015).

    Article  Google Scholar 

  • Jalili-Firoozinezhad, S. et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3, 520–531 (2019).

    Article  Google Scholar 

  • O’Toole, P. W., Marchesi, J. R. & Hill, C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2, 17057 (2017).

    Article  Google Scholar 

  • Charbonneau, M. R., Isabella, V. M., Li, N. & Kurtz, C. B. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat. Commun. 11, 1738 (2020).

    Article  Google Scholar 

  • Zhou, W., Chow, K.-H., Fleming, E. & Oh, J. Selective colonization ability of human fecal microbes in different mouse gut environments. ISME J. 13, 805–823 (2019).

    Article  Google Scholar 

  • Shin, W. & Kim, H. J. Intestinal barrier dysfunction orchestrates the onset of inflammatory host-microbiome cross-talk in a human gut inflammation-on-a-chip. Proc. Natl Acad. Sci. USA 115, E10539–E10547 (2018).

    Article  Google Scholar 

  • Grassart, A. et al. Bioengineered human organ-on-chip reveals intestinal microenvironment and mechanical forces impacting Shigella infection. Cell Host Microbe 26, 435–444 (2019).

    Article  Google Scholar 

  • Tovaglieri, A. et al. Species-specific enhancement of enterohemorrhagic E. coli pathogenesis mediated by microbiome metabolites. Microbiome 7, 43 (2019).

    Article  Google Scholar 

  • Boquet-Pujadas, A. et al. 4D live imaging and computational modeling of a functional gut-on-a-chip evaluate how peristalsis facilitates enteric pathogen invasion. Sci. Adv. 8, eabo5767 (2022).

    Article  Google Scholar 

  • Bein, A. et al. Enteric coronavirus infection and treatment modeled with an immunocompetent human intestine-on-a-chip. Front. Pharmacol. 12, 718484 (2021).

    Article  Google Scholar 

  • Villenave, R. et al. Human gut-on-a-chip supports polarized infection of coxsackie B1 virus in vitro. PLoS ONE 12, e0169412 (2017).

    Article  Google Scholar 

  • Nikolaev, M. et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574–578 (2020).

    Article  Google Scholar 

  • Lanik, W. E. et al. Microfluidic device facilitates in vitro modeling of human neonatal necrotizing enterocolitis-on-a-chip. JCI Insight 8, e146496 (2023).

    Article  Google Scholar 

  • Thacker, V. V. et al. A lung-on-chip model of early Mycobacterium tuberculosis infection reveals an essential role for alveolar epithelial cells in controlling bacterial growth. eLife 9, e59961 (2020).

    Article  Google Scholar 

  • Bai, H. et al. Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip. Nat. Commun. 13, 1928 (2022).

    Article  Google Scholar 

  • Deinhardt-Emmer, S. et al. Co-infection with Staphylococcus aureus after primary influenza virus infection leads to damage of the endothelium in a human alveolus-on-a-chip model. Biofabrication 12, 025012 (2020).

    Article  Google Scholar 

  • Plebani, R. et al. Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip. J. Cyst. Fibros. 21, 606–615 (2022).

    Article  Google Scholar 

  • Si, L. et al. Clinically relevant influenza virus evolution reconstituted in a human lung airway-on-a-chip. Microbiol. Spectr. 9, e0025721 (2021).

    Article  Google Scholar 

  • Si, L. et al. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat. Biomed. Eng. 5, 815–829 (2021).

    Article  Google Scholar 

  • Buzhdygan, T. P. et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier. Neurobiol. Dis. 146, 105131 (2020).

    Article  Google Scholar 

  • Boghdeh, N. A. et al. Application of a human blood brain barrier organ-on-a-chip model to evaluate small molecule effectiveness against Venezuelan Equine Encephalitis virus. Viruses 14, 2799 (2022).

    Article  Google Scholar 

  • Kim, J. et al. Fungal brain infection modelled in a human-neurovascular-unit-on-a-chip with a functional blood–brain barrier. Nat. Biomed. Eng. 5, 830–846 (2021).

    Article  Google Scholar 

  • Kim, J. J. et al. A microscale, full-thickness, human skin on a chip assay simulating neutrophil responses to skin infection and antibiotic treatments. Lab Chip 19, 3094–3103 (2019).

    Article  Google Scholar 

  • Sun, S., Jin, L., Zheng, Y. & Zhu, J. Modeling human HSV infection via a vascularized immune-competent skin-on-chip platform. Nat. Commun. 13, 5481 (2022).

    Article  Google Scholar 

  • Srinivasan, A., Uppuluri, P., Lopez-Ribot, J. & Ramasubramanian, A. K. Development of a high-throughput Candida albicans biofilm chip. PLoS ONE 6, e19036 (2011).

    Article  Google Scholar 

  • Deguchi, S. et al. Elucidation of the liver pathophysiology of COVID-19 patients using liver-on-a-chips. PNAS Nexus 2, pgad029 (2023).

    Article  Google Scholar 

  • Rahimi, C. et al. Oral mucosa-on-a-chip to assess layer-specific responses to bacteria and dental materials. Biomicrofluidics 12, 054106 (2018).

    Article  Google Scholar 

  • Sharma, K. et al. Dynamic persistence of UPEC intracellular bacterial communities in a human bladder-chip model of urinary tract infection. eLife 10, e66481 (2021).

    Article  Google Scholar 

  • Mahajan, G. et al. Vaginal microbiome-host interactions modeled in a human vagina-on-a-chip. Microbiome 10, 201 (2022).

    Article  Google Scholar 

  • Tantengco, O. A. G. et al. Modeling ascending Ureaplasma parvum infection through the female reproductive tract using vagina‐cervix‐decidua‐organ‐on‐a‐chip and feto‐maternal interface‐organ‐on‐a‐chip. FASEB J. 36, e22551 (2022).

    Article  Google Scholar 

  • Zhu, Y. et al. Placental barrier-on-a-chip: modeling placental inflammatory responses to bacterial infection. ACS Biomater. Sci. Eng. 4, 3356–3363 (2018).

    Article  Google Scholar 

  • Goralski, T. D. et al. A novel approach to interrogating the effects of chemical warfare agent exposure using organ-on-a-chip technology and multiomic analysis. PLoS ONE 18, e0280883 (2023).

    Article  Google Scholar 

  • Gillooly, J. F., Hein, A. & Damiani, R. Nuclear DNA content varies with cell size across human cell types. Cold Spring Harb. Perspect. Biol. 7, a019091 (2015).

    Article  Google Scholar 

  • Kidder, B. L., Hu, G. & Zhao, K. ChIP-Seq: technical considerations for obtaining high-quality data. Nat. Immunol. 12, 918–922 (2011).

    Article  Google Scholar 

  • Tang, F. et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat. Protoc. 5, 516–535 (2010).

    Article  Google Scholar 

  • Lombardo, J. A., Aliaghaei, M., Nguyen, Q. H., Kessenbrock, K. & Haun, J. B. Microfluidic platform accelerates tissue processing into single cells for molecular analysis and primary culture models. Nat. Commun. 12, 2858 (2021).

    Article  Google Scholar 

  • Kassem, S. et al. Proteomics for low cell numbers: how to optimize the sample preparation workflow for mass spectrometry analysis. J. Proteome Res. 20, 4217–4230 (2021).

    Article  Google Scholar 

  • Schönberger, K. et al. LC-MS-based targeted metabolomics for FACS-purified rare cells. Anal. Chem. 95, 4325–4334 (2023).

    Article  Google Scholar 

  • Zhou, W., Dou, M., Timilsina, S. S., Xu, F. & Li, X. Recent innovations in cost-effective polymer and paper hybrid microfluidic devices. Lab Chip 21, 2658–2683 (2021).

    Article  Google Scholar 

  • Ferreiro, A. L. et al. Gut microbiome composition may be an indicator of preclinical Alzheimer’s disease. Sci. Transl Med. 15, eabo2984 (2023).

    Article  Google Scholar 

  • Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140 (2004).

    Article  Google Scholar 

  • Chu, H., Chan, J. F. & Yuen, K. Y. Animal models in SARS-CoV-2 research. Nat. Methods 19, 392–394 (2022).

    Article  Google Scholar 

  • Hatziioannou, T. & Evans, D. T. Animal models for HIV/AIDS research. Nat. Rev. Microbiol. 10, 852–867 (2012).

    Article  Google Scholar 

  • Villenave, R. et al. In vitro modeling of respiratory syncytial virus infection of pediatric bronchial epithelium, the primary target of infection in vivo. Proc. Natl Acad. Sci. USA 109, 5040–5045 (2012).

    Article  Google Scholar 

  • Li, Y. et al. Induction and suppression of antiviral RNA interference by influenza A virus in mammalian cells. Nat. Microbiol. 2, 16250 (2016).

    Article  Google Scholar 

  • Pires De Souza, G. A. et al. Choosing a cellular model to study SARS-CoV-2. Front. Cell. Infect. Microbiol. 12, 1003608 (2022).

    Article  Google Scholar 

  • Ho, B. C. et al. Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nat. Commun. 5, 3344 (2014).

    Article  Google Scholar 

  • Riabi, S. et al. Study of Coxsackie B viruses interactions with Coxsackie Adenovirus receptor and decay-accelerating factor using human CaCo-2 cell line. J. Biomed. Sci. 21, 50 (2014).

    Article  Google Scholar 

  • March, S. et al. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nat. Protoc. 10, 2027–2053 (2015).

    Article  Google Scholar 

  • Soorneedi, A. R. & Moore, M. D. Recent developments in norovirus interactions with bacteria. Curr. Opin. Food Sci. 48, 100926 (2022).

    Article  Google Scholar 

  • Ettayebi, K. et al. Replication of human noroviruses in stem cell–derived human enteroids. Science 353, 1387–1393 (2016).

    Article  Google Scholar 

  • Saxena, K. et al. Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J. Virol. 90, 43–56 (2016).

    Article  Google Scholar 

  • Qian, X., Nguyen, H. N., Jacob, F., Song, H. & Ming, G. L. Using brain organoids to understand Zika virus-induced microcephaly. Development 144, 952–957 (2017).

    Article  Google Scholar 

  • Thacker, V. V. et al. Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human lung-on-chip model. EMBO Rep. 22, e52744 (2021).

    Article  Google Scholar 

  • Zhang, M. et al. Biomimetic human disease model of SARS-CoV-2-induced lung injury and immune responses on organ chip system. Adv. Sci. 8, 2002928 (2021).

    Article  Google Scholar 

  • Holdcroft, A. M., Ireland, D. J. & Payne, M. S. The vaginal microbiome in health and disease—what role do common intimate hygiene practices play? Microorganisms 11, 298 (2023).

    Article  Google Scholar 

  • Fettweis, J. M. et al. The vaginal microbiome and preterm birth. Nat. Med. 25, 1012–1021 (2019).

    Article  Google Scholar 

  • Lewis, F. M. T., Bernstein, K. T. & Aral, S. O. Vaginal microbiome and its relationship to behavior, sexual health, and sexually transmitted diseases. Obstet. Gynecol. 129, 643–654 (2017).

    Article  Google Scholar 

  • Baud, A. et al. Microbial diversity in the vaginal microbiota and its link to pregnancy outcomes. Sci. Rep. 13, 9061 (2023).

    Article  Google Scholar 

  • Xiao, S. et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat. Commun. 8, 14584 (2017).

    Article  Google Scholar 

  • Gnecco, J. S. et al. Hemodynamic forces enhance decidualization via endothelial-derived prostaglandin E2 and prostacyclin in a microfluidic model of the human endometrium. Hum. Reprod. 34, 702–714 (2019).

    Article  Google Scholar 

  • Kaur, H., Merchant, M., Haque, M. M. & Mande, S. S. Crosstalk between female gonadal hormones and vaginal microbiota across various phases of women’s gynecological lifecycle. Front. Microbiol. 11, 551 (2020).

    Article  Google Scholar 

  • Gardella, B. et al. The complex interplay between vaginal microbiota, HPV infection, and immunological microenvironment in cervical intraepithelial neoplasia: a literature review. Int. J. Mol. Sci. 23, 7174 (2022).

    Article  Google Scholar 

  • Chen, R. et al. Probiotics are a good choice for the treatment of bacterial vaginosis: a meta-analysis of randomized controlled trial. Reprod. Health 19, 137 (2022).

    Article  Google Scholar 

  • Lev-Sagie, A. et al. Vaginal microbiome transplantation in women with intractable bacterial vaginosis. Nat. Med. 25, 1500–1504 (2019).

    Article  Google Scholar 

  • De Gregorio, V. et al. Immunoresponsive microbiota-gut-on-chip reproduces barrier dysfunction, stromal reshaping and probiotics translocation under inflammation. Biomaterials 286, 121573 (2022).

    Article  Google Scholar 

  • Jeon, M. S. et al. Contributions of the microbiome to intestinal inflammation in a gut-on-a-chip. Nano Converg. 9, 8 (2022).

    Article  Google Scholar 

  • Jing, B. et al. Establishment and application of peristaltic human gut-vessel microsystem for studying host-microbial interaction. Front. Bioeng. Biotechnol. 8, 272 (2020).

    Article  Google Scholar 

  • Nelson, M. T. et al. Characterization of an engineered live bacterial therapeutic for the treatment of phenylketonuria in a human gut-on-a-chip. Nat. Commun. 12, 2805 (2021).

    Article  Google Scholar 

  • Cubillos-Ruiz, A. et al. An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis. Nat. Biomed. Eng. 6, 910–921 (2022).

    Article  Google Scholar 

  • Garber, K. Drugging the gut microbiome. Nat. Biotechnol. 33, 228–231 (2015).

    Article  Google Scholar 

  • Waller, K. M. J., Leong, R. W. & Paramsothy, S. An update on fecal microbiota transplantation for the treatment of gastrointestinal diseases. J. Gastroenterol. Hepatol. 37, 246–255 (2022).

    Article  Google Scholar 

  • Suk, K. T. & Koh, H. New perspective on fecal microbiota transplantation in liver diseases. J. Gastroenterol. Hepatol. 37, 24–33 (2022).

    Article  Google Scholar 

  • Tan, P., Li, X., Shen, J. & Feng, Q. Fecal microbiota transplantation for the treatment of inflammatory bowel disease: an update. Front. Pharmacol. 11, 574533 (2020).

    Article  Google Scholar 

  • Sokol, H. et al. Fecal microbiota transplantation to maintain remission in Crohn’s disease: a pilot randomized controlled study. Microbiome 8, 12 (2020).

    Article  Google Scholar 

  • Kang, G. U. et al. Exploration of potential gut microbiota-derived biomarkers to predict the success of fecal microbiota transplantation in ulcerative colitis: a prospective cohort in Korea. Gut Liver 16, 775–785 (2022).

    Article  Google Scholar 

  • Xu, D. et al. Efficacy of fecal microbiota transplantation in irritable bowel syndrome: a systematic review and meta-analysis. Am. J. Gastroenterol. 114, 1043–1050 (2019).

    Article  Google Scholar 

  • Ohkusa, T., Koido, S., Nishikawa, Y. & Sato, N. Gut microbiota and chronic constipation: a review and update. Front. Med. 6, 19 (2019).

    Article  Google Scholar 

  • Morais, L. H., Schreiber, H. L. IV & Mazmanian, S. K. The gut microbiota–brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 19, 241–255 (2021).

    Article  Google Scholar 

  • Weersma, R. K., Zhernakova, A. & Fu, J. Interaction between drugs and the gut microbiome. Gut 69, 1510–1519 (2020).

    Article  Google Scholar 

  • Wallace, B. D. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330, 831–835 (2010).

    Article  Google Scholar 

  • Zhang, J. et al. Microbial enzymes induce colitis by reactivating triclosan in the mouse gastrointestinal tract. Nat. Commun. 13, 136 (2022).

    Article  Google Scholar 

  • Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).

    Article  Google Scholar 

  • Kieser, S., Zdobnov, E. M. & Trajkovski, M. Comprehensive mouse microbiota genome catalog reveals major difference to its human counterpart. PLoS Comput. Biol. 18, e1009947 (2022).

    Article  Google Scholar 

  • Sontheimer-Phelps, A. et al. Human colon-on-a-chip enables continuous in vitro analysis of colon mucus layer accumulation and physiology. Cell. Mol. Gastroenterol. Hepatol. 9, 507–526 (2020).

    Article  Google Scholar 

  • Lauschke, V. M. & Ingelman-Sundberg, M. The importance of patient-specific factors for hepatic drug response and toxicity. Int. J. Mol. Sci. 17, 1714 (2016).

    Article  Google Scholar 

  • Swanson, H. I. Drug metabolism by the host and gut microbiota: a partnership or rivalry? Drug Metab. Dispos. 43, 1499–1504 (2015).

    Article  Google Scholar 

  • Vázquez-Baeza, Y. et al. Impacts of the human gut microbiome on therapeutics. Annu. Rev. Pharmacol. Toxicol. 58, 253–270 (2018).

    Article  Google Scholar 

  • Davies, J. C. et al. Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients aged 2–5 years with cystic fibrosis and a CFTR gating mutation (KIWI): an open-label, single-arm study. Lancet Respir. Med. 4, 107–115 (2016).

    Article  Google Scholar 

  • Chakrabarti, R. S. et al. Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin. eLife 6, e23355 (2017).

    Article  Google Scholar 

  • Forslund, S. K. et al. Combinatorial, additive and dose-dependent drug–microbiome associations. Nature 600, 500–505 (2021).

    Article  Google Scholar 

  • Cryan, J. F. et al. The microbiota-gut-brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    Article  Google Scholar 

  • Awoniyi, M. et al. Protective and aggressive bacterial subsets and metabolites modify hepatobiliary inflammation and fibrosis in a murine model of PSC. Gut 72, 671–685 (2023).

    Article  Google Scholar 

  • Enaud, R. et al. The gut-lung axis in health and respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front. Cell. Infect. Microbiol. 10, 9 (2020).

    Article  Google Scholar 

  • Ray, K. The oral–gut axis in IBD. Nat. Rev. Gastroenterol. Hepatol. 17, 532 (2020).

    Article  Google Scholar 

  • De Pessemier, B. et al. Gut–skin axis: current knowledge of the interrelationship between microbial dysbiosis and skin conditions. Microorganisms 9, 353 (2021).

    Article  Google Scholar 

  • Svegliati-Baroni, G., Patricio, B., Lioci, G., Macedo, M. P. & Gastaldelli, A. Gut-pancreas-liver axis as a target for treatment of NAFLD/NASH. Int. J. Mol. Sci. 21, 5820 (2020).

    Article  Google Scholar 

  • Taghinezhad-S, S. et al. Twenty years of research on HPV vaccines based on genetically modified lactic acid bacteria: an overview on the gut-vagina axis. Cell. Mol. Life Sci. 78, 1191–1206 (2021).

    Article  Google Scholar 

  • Schembri, M. A., Nhu, N. T. K. & Phan, M. D. Gut–bladder axis in recurrent UTI. Nat. Microbiol. 7, 601–602 (2022).

    Article  Google Scholar 

  • Edington, C. D. et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci. Rep. 8, 4530 (2018).

    Article  Google Scholar 

  • Ronaldson-Bouchard, K. et al. A multi-organ chip with matured tissue niches linked by vascular flow. Nat. Biomed. Eng. 6, 351–371 (2022).

    Article  Google Scholar 

  • Novak, R. et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nat. Biomed. Eng. 4, 407–420 (2020).

    Article  Google Scholar 

  • Wikswo, J. P. The relevance and potential roles of microphysiological systems in biology and medicine. Exp. Biol. Med. 239, 1061–1072 (2014).

    Article  Google Scholar 

  • Lagier, J. C. et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 1, 16203 (2016).

    Article  Google Scholar 

  • Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

    Article  Google Scholar 

  • Morris, B. E., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).

    Article  Google Scholar 

  • Henke, M. T. et al. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc. Natl Acad. Sci. USA 116, 12672–12677 (2019).

    Article  Google Scholar 

  • Natividad, J. M. et al. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nat. Commun. 9, 2802 (2018).

    Article  Google Scholar 

  • Kim, H. J., Boedicker, J. Q., Choi, J. W. & Ismagilov, R. F. Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc. Natl Acad. Sci. USA 105, 18188–18193 (2008).

    Article  Google Scholar 

  • Simon, J. C., Marchesi, J. R., Mougel, C. & Selosse, M. A. Host-microbiota interactions: from holobiont theory to analysis. Microbiome 7, 5 (2019).

    Article  Google Scholar 

  • Gutierrez Lopez, D. E., Lashinger, L. M., Weinstock, G. M. & Bray, M. S. Circadian rhythms and the gut microbiome synchronize the host’s metabolic response to diet. Cell Metab. 33, 873–887 (2021).

    Article  Google Scholar 

  • Sarkar, A. et al. The microbiome in psychology and cognitive neuroscience. Trends Cogn. Sci. 22, 611–636 (2018).

    Article  Google Scholar 

  • Tomofuji, Y. et al. Reconstruction of the personal information from human genome reads in gut metagenome sequencing data. Nat. Microbiol. 8, 1079–1094 (2023).

    Article  Google Scholar 

  • Woo, V. & Alenghat, T. Epigenetic regulation by gut microbiota. Gut Microbes 14, 2022407 (2022).

    Article  Google Scholar 

  • Stacy, A. et al. Infection trains the host for microbiota-enhanced resistance to pathogens. Cell 184, 615–627 (2021).

    Article  Google Scholar 

  • Davenport, E. R. et al. The human microbiome in evolution. BMC Biol. 15, 127 (2017).

    Article  Google Scholar 

  • Klingelhoefer, L. & Reichmann, H. Pathogenesis of Parkinson disease—the gut–brain axis and environmental factors. Nat. Rev. Neurol. 11, 625–636 (2015).

    Article  Google Scholar 

  • D’Alessio, S. et al. Revisiting fibrosis in inflammatory bowel disease: the gut thickens. Nat. Rev. Gastroenterol. Hepatol. 19, 169–184 (2022).

    Article  Google Scholar 

  • Reshetnyak, V. I., Burmistrov, A. I. & Maev, I. V. Helicobacter pylori: commensal, symbiont or pathogen? World J. Gastroenterol. 27, 545–560 (2021).

    Article  Google Scholar 

  • Duboux, S., Van Wijchen, M. & Kleerebezem, M. The possible link between manufacturing and probiotic efficacy; a molecular point of view on Bifidobacterium. Front. Microbiol. 12, 812536 (2021).

    Article  Google Scholar 

  • Johnston, C. D. & Bullman, S. The tumour-associated microbiome. Nat. Rev. Gastroenterol. Hepatol. 19, 347–348 (2022).

    Article  Google Scholar 

  • Neurath, M. F. Host–microbiota interactions in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 76–77 (2020).

    Article  Google Scholar 

  • Spellberg, B. et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin. Infect. Dis. 46, 155–164 (2008).

    Article  Google Scholar 

  • Grimaldi, A. et al. Improved SARS-CoV-2 sequencing surveillance allows the identification of new variants and signatures in infected patients. Genome Med. 14, 90 (2022).

    Article  Google Scholar 

  • Shoji, J. Y., Davis, R. P., Mummery, C. L. & Krauss, S. Global meta‐analysis of organoid and organ‐on‐chip research. Adv. Healthc. Mater. https://doi.org/10.1002/adhm.202301067 (2023).

  • Kawasaki, M., Goyama, T., Tachibana, Y., Nagao, I. & Ambrosini, Y. M. Farm and companion animal organoid models in translational research: a powerful tool to bridge the gap between mice and humans. Front. Med. Technol. 4, 895379 (2022).

    Article  Google Scholar 

  • Rodrigues, N. S. et al. Biomaterial and biofilm interactions with the pulp-dentin complex-on-a-chip. J. Dent. Res. 100, 1136–1143 (2021).

    Article  Google Scholar 

  • Wright, E., Neethirajan, S. & Weng, X. Microfluidic wound model for studying the behaviors of Pseudomonas aeruginosa in polymicrobial biofilms. Biotechnol. Bioeng. 112, 2351–2359 (2015).

    Article  Google Scholar 

  • Greenhalgh, K. et al. Integrated in vitro and in silico modeling delineates the molecular effects of a synbiotic regimen on colorectal-cancer-derived cells. Cell Rep. 27, 1621–1632 (2019).

    Article  Google Scholar 

  • Hu, W. et al. A cellular chip-MS system for investigation of Lactobacillus rhamnosus GG and irinotecan synergistic effects on colorectal cancer. Chin. Chem. Lett. 33, 2096–2100 (2022).

    Article  Google Scholar 

  • van Rijn, J. M. et al. High-definition DIC imaging uncovers transient stages of pathogen infection cycles on the surface of human adult stem cell-derived intestinal epithelium. mBio 13, e00022 (2022).

    Google Scholar 

  • Muscogiuri, G. et al. Gut microbiota: a new path to treat obesity. Int. J. Obes. Suppl. 9, 10–19 (2019).

    Article  Google Scholar 

  • Lavelle, A. & Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 17, 223–237 (2020).

    Article  Google Scholar 

  • Cao, Y. et al. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science 378, eabm3233 (2022).

    Article  Google Scholar 

  • Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  Google Scholar 

  • Canyelles, M. et al. Trimethylamine N-oxide: a link among diet, gut microbiota, gene regulation of liver and intestine cholesterol homeostasis and HDL function. Int. J. Mol. Sci. 19, 3228 (2018).

    Article  Google Scholar 

  • Jiang, C., Li, G., Huang, P., Liu, Z. & Zhao, B. The gut microbiota and Alzheimer’s disease. J. Alzheimers Dis. 58, 1–15 (2017).

    Article  Google Scholar 

  • Correale, J., Hohlfeld, R. & Baranzini, S. E. The role of the gut microbiota in multiple sclerosis. Nat. Rev. Neurol. 18, 544–558 (2022).

    Article  Google Scholar 

  • Garcia-Gutierrez, E., Narbad, A. & Rodríguez, J. M. Autism spectrum disorder associated with gut microbiota at immune, metabolomic, and neuroactive level. Front. Neurosci. 14, 578666 (2020).

    Article  Google Scholar 

  • Marx, U. et al. Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. ALTEX 37, 365–394 (2020).

    Google Scholar 

  • Nieskens, T. T. G. et al. Nephrotoxic antisense oligonucleotide SPC5001 induces kidney injury biomarkers in a proximal tubule-on-a-chip. Arch. Toxicol. 95, 2123–2136 (2021).

    Article  Google Scholar 

  • Jang, K.-J. et al. Reproducing human and cross-species drug toxicities using a Liver-Chip. Sci. Transl. Med. 11, eaax5516 (2019).

    Article  Google Scholar 

  • Hübner, J. et al. Simultaneous evaluation of anti-EGFR-induced tumour and adverse skin effects in a microfluidic human 3D co-culture model. Sci. Rep. 8, 15010 (2018).

    Article  Google Scholar 

  • Foster, A. J. et al. Integrated in vitro models for hepatic safety and metabolism: evaluation of a human Liver-Chip and liver spheroid. Arch. Toxicol. 93, 1021–1037 (2019).

    Article  Google Scholar 

  • McAleer, C. W. et al. On the potential of in vitro organ-chip models to define temporal pharmacokinetic-pharmacodynamic relationships. Sci. Rep. 9, 9619 (2019).

    Article  Google Scholar