
Dumont, B., Groot, J. C. J. & Tichit, M. Review: Make ruminants green again—how can sustainable intensification and agroecology converge for a better future?. Animal 12, s210–s219 (2018).
Phillips, C. J. C. & Sorensen, J. T. Sustainability in cattle production systems. J. Agric. Environ. Ethics 6, 61–73 (1993).
Nogueira, G. P. Puberty in South American Bos indicus (Zebu) cattle. Anim. Reprod. Sci. 82–83, 361–372 (2004).
Malafaia, G. C., Mores, G. de V., Casagranda, Y. G., Barcellos, J. O. J. & Costa, F. P. The Brazilian beef cattle supply chain in the next decades. Livest. Sci. 253, 104704 (2021).
Baruselli, P. S. et al. Applying assisted reproductive technology and reproductive management to reduce CO2-equivalent emission in dairy and beef cattle: A review. Anim. Reprod. https://doi.org/10.1590/1984-3143-ar2023-0060 (2023).
de Abreu, L. Â., Rezende, V. T., Gameiro, A. H. & Baruselli, P. S. Effect of reduced age at first calving and an increased weaning rate on CO2 equivalent emissions in a cow-calf system. Rev. Eng. na Agric. REVENG 30, 311–318 (2022).
Cullen, B. R., Eckard, R. J., Timms, M. & Phelps, D. G. The effect of earlier mating and improving fertility on greenhouse gas emissions intensity of beef production in northern Australian herds. Rangel. J. 38, 283 (2016).
D’Occhio, M. J., Baruselli, P. S. & Campanile, G. Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: A review. Theriogenology 125, 277–284 (2019).
Amstalden, M., Alves, B. R. C., Liu, S., Cardoso, R. C. & Williams, G. L. Neuroendocrine pathways mediating nutritional acceleration of puberty: Insights from ruminant models. Front. Endocrinol. 2, 1–7 (2011).
Freitas, B. G. et al. Relationship of body maturation with response to estrus synchronization and fixed-time AI in Nelore (Bos indicus) heifers. Livest. Sci. 251, 104632 (2021).
Gasser, C. L. et al. Induction of precocious puberty in heifers III: Hastened reduction of estradiol negative feedback on secretion of luteinizing hormone1. J. Anim. Sci. 84, 2050–2056 (2006).
Zieba, D. A., Amstalden, M. & Williams, G. L. Regulatory roles of leptin in reproduction and metabolism: A comparative review. Domest. Anim. Endocrinol. 29, 166–185 (2005).
Scheffler, J. M. et al. Early metabolic imprinting events increase marbling scores in fed cattle. J. Anim. Sci. 92, 320–324 (2014).
Kenéz, A. et al. Different milk feeding intensities during the first 4 weeks of rearing dairy calves: Part 3: Plasma metabolomics analysis reveals long-term metabolic imprinting in Holstein heifers. J. Dairy Sci. 101, 8446–8460 (2018).
Hanley, B. et al. Metabolic imprinting, programming and epigenetics—a review of present priorities and future opportunities. Br. J. Nutr. 104, S1–S25 (2010).
Lucas A. Programming by early nutrition in man. In Ciba Foundation Symposium 156‐The Childhood Environment and Adult Disease: The Childhood Environment and Adult Disease: Ciba Foundation Symposium 38–55 (John Wiley & Sons, Ltd., 1991)
Grove, K. L. & Smith, M. S. Ontogeny of the hypothalamic neuropeptide Y system. Physiol. Behav. 79, 47–63 (2003).
Patel, M. S., Srinivasan, M. & Laychock, S. G. Metabolic programming: Role of nutrition in the immediate postnatal life. J. Inherit. Metab. Dis. 32, 218–228 (2009).
Hu, L. et al. Effects of birth weight and postnatal nutritional restriction on skeletal muscle development, myofiber maturation, and metabolic status of early-weaned piglets. Animals 10, 156 (2020).
Soberon, F. & Van Amburgh, M. E. The effect of nutrient intake from milk or milk replacer of preweaned dairy calves on lactation milk yield as adults: A meta-analysis of current data1. J. Anim. Sci. 91, 706–712 (2013).
Faulkner, D. B. et al. Performance and nutrient metabolism by nursing calves supplemented with limited or unlimited corn or soyhulls. J. Anim. Sci. 72, 470–477 (1994).
Moriel, P. & Arthington, J. D. Effects of trace mineral-fortified, limit-fed preweaning supplements on performance of pre- and postweaned beef calves. J. Anim. Sci. 91, 1371–1380 (2013).
Valente, E. E. L. et al. Strategies of supplementation of female suckling calves and nutrition parameters of beef cows on tropical pasture. Trop. Anim. Health Prod. 44, 1803–1811 (2012).
Kelly, A. K. et al. Effect of calfhood nutrition on metabolic hormones, gonadotropins, and estradiol concentrations and on reproductive organ development in beef heifer calves. J. Anim. Sci. 98, 1–13 (2020).
Guggeri, D. et al. Effect of different management systems on growth, endocrine parameters and puberty in Hereford female calves grazing Campos grassland. Livest. Sci. 167, 455–462 (2014).
Cardoso, R. C., Alves, B. R. C., Sharpton, S. M., Williams, G. L. & Amstalden, M. Nutritional programming of accelerated puberty in Heifers: Involvement of pro-opiomelanocortin neurones in the arcuate nucleus. J. Neuroendocrinol. 27, 647–657 (2015).
Garza, V., West, S. M. & Cardoso, R. C. Review: Gestational and postnatal nutritional effects on the neuroendocrine control of puberty and subsequent reproductive performance in heifers. Animal 17, 100782 (2023).
Alves, B. R. C. et al. Nutritional programming of accelerated puberty in heifers: alterations in DNA methylation in the arcuate nucleus†,‡. Biol. Reprod. https://doi.org/10.1095/biolreprod.116.144741 (2016).
D’Occhio, M. J., Baruselli, P. S. & Campanile, G. Metabolic health, the metabolome and reproduction in female cattle: A review. Ital. J. Anim. Sci. 18, 858–867 (2019).
González, L. A. et al. Plasma metabolomics reveals major changes in carbohydrate, lipid, and protein metabolism of abruptly weaned beef calves. Sci. Rep. 13, 8176 (2023).
Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biol. 18, e3000411 (2020).
Ayres, H. et al. Validation of body condition score as a predictor of subcutaneous fat in Nelore (Bos indicus) cows. Livest. Sci. 123, 175–179 (2009).
Williams, A. R. Ultrasound applications in beef cattle carcass research and management. J. Anim. Sci. 80, 183–188 (2002).
Catussi, B. L. C. et al. Prepartum and/or postpartum supplementation with monensin-molasses multinutrient blocks to optimize fertility and calf performance in primiparous beef cows. Anim. Biosci. 35, 1675–1688 (2022).
Catussi, B. et al. Influence of nutrition and genetic selection for puberty on the reproductive response of Nelore heifers submitted to fixed-time AI and oocyte recovery with in vitro fertilization. Livest. Sci. 274, 105263 (2023).
Wei, R., Li, G. & Seymour, A. B. High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. Anal. Chem. 82, 5527–5533 (2010).
St-Pierre, N. R. Design and analysis of pen studies in the animal sciences. J. Dairy Sci. 90, E87–E99 (2007).
Pang, Z. et al. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021).
Carvalho, V. V. et al. A meta-analysis of the effects of creep-feeding supplementation on performance and nutritional characteristics by beef calves grazing on tropical pastures. Livest. Sci. 227, 175–182 (2019).
Reis, M. M. et al. Creep-feeding to stimulate metabolic imprinting in nursing beef heifers: Impacts on heifer growth, reproductive and physiological variables. Animal 9, 1500–1508 (2015).
da Silva, A. G. et al. Energetic-protein supplementation in the last 60days of gestation improves performance of beef cows grazing tropical pastures. J. Anim. Sci. Biotechnol. 8, 1–9 (2017).
Morrow, R. E., Stricker, J. A., Garner, G. B., Jacobs, V. E. & Hires, W. G. Cow-calf production on tall fescue-ladino clover pastures with and without nitrogen fertilization or creep feeding: Fall calves. J. Prod. Agric. 1, 145–148 (1988).
Harvey, K. M., Cooke, R. F. & Moriel, P. Impacts of nutritional management during early postnatal life on long-term physiological and productive responses of beef cattle. Front. Anim. Sci. 2, 1–11 (2021).
Felig, P., Pozefsk, T., Marlis, E. & Cahill, G. F. Alanine: Key role in gluconeogenesis. Science 167, 1003–1004 (1970).
Wu, G. Amino Acids (CRC Press, 2013).
Pallardó, F. V., Markovic, J., García, J. L. & Viña, J. Role of nuclear glutathione as a key regulator of cell proliferation. Mol. Aspects Med. 30, 77–85 (2009).
Wu, G., Lupton, J. R., Turner, N. D., Fang, Y.-Z. & Yang, S. Glutathione metabolism and its implications for health. J. Nutr. 134, 489–492 (2004).
Ennis, M. et al. Dietary phenylalanine and tyrosine requirements in healthy human pregnancy. Curr. Dev. Nutr. https://doi.org/10.1093/cdn/nzaa054_050 (2020).
Imaz, J. A., García, S. & González, L. A. The metabolomics profile of growth rate in grazing beef cattle. Sci. Rep. 12, 1–9 (2022).
Gilbreath, K. R., Bazer, F. W., Carey Satterfield, M. & Guoyao, W. Amino acid nutrition and reproductive performance in ruminants. In Amino Acids in Nutrition and Health: Amino Acids in the Nutrition of Companion, Zoo and Farm Animals (ed. Guoyao, Wu.) 43–61 (Springer International Publishing, 2021). https://doi.org/10.1007/978-3-030-54462-1_4.
Sampaio, R. L. et al. The nutritional interrelationship between the growing and finishing phases in crossbred cattle raised in a tropical system. Trop. Anim. Health Prod. 49, 1015–1024 (2017).
Silva, L. F. P., Dixon, R. M. & Costa, D. F. A. Nitrogen recycling and feed efficiency of cattle fed protein-restricted diets. Anim. Prod. Sci. 59, 2093–2107 (2019).
Titgemeyer, E. C. et al. Effect of forage quality on digestion and performance responses of cattle to supplementation with cooked molasses blocks. J. Anim. Sci. 82, 487–494 (2004).
Tedeschi, L. O., Fox, D. G. & Tylutki, T. P. Potential environmental benefits of ionophores in ruminant diets. J. Environ. Qual. 32, 1591–1602 (2003).
Lech, J. C. et al. What to feed or what not to feed-that is still the question. Metabolomics 17, 102 (2021).
Nepomuceno, D. D. et al. Effect of pre-partum dam supplementation, creep-feeding and post-weaning feedlot on age at puberty in Nellore heifers. Livest. Sci. 195, 58–62 (2017).
Moraes, J. G. N. et al. Analysis of the uterine lumen in fertility-classified heifers: II. Proteins and metabolites. Biol. Reprod. 102, 571–587 (2020).
Hess, B. et al. Nutritional controls of beef cow reproduction. J. Anim. Sci. 83, E90–E106 (2005).
Lane, M. & Gardner, D. K. Mitochondrial malate-aspartate shuttle regulates mouse embryo nutrient consumption. J. Biol. Chem. 280, 18361–18367 (2005).
Borst, P. The malate–aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway. IUBMB Life 72, 2241–2259 (2020).
Wiltbank, M. C., Gümen, A. & Sartori, R. Physiological classification of anovulatory conditions in cattle. Theriogenology 57, 21–52 (2002).
Mitchell, M., Cashman, K. S., Gardner, D. K., Thompson, J. G. & Lane, M. Disruption of mitochondrial malate-aspartate shuttle activity in mouse blastocysts impairs viability and fetal growth. Biol. Reprod. 80, 295–301 (2009).
Boyle, J. Lehninger principles of biochemistry (4th ed.): Nelson, D., and Cox, M. In Biochemistry and Molecular Biology Education Vol. 33 (Macmillan, 2005).
Gao, H., Wu, G., Spencer, T. E., Johnson, G. A. & Bazer, F. W. Select nutrients in the ovine uterine lumen. V. Nitric oxide synthase, GTP cyclohydrolase, and ornithine decarboxylase in ovine uteri and peri-implantation conceptuses. Biol. Reprod. 81, 67–76 (2009).
Santana, P. D. P. B. et al. Supplementation of bovine embryo culture medium with L-arginine improves embryo quality via nitric oxide production. Mol. Reprod. Dev. 81, 918–927 (2014).
Ruiz de Chávez, J. A. et al. Supplementation with rumen-protected L-arginine-HCl increased fertility in sheep with synchronized estrus. Trop. Anim. Health Prod. 47, 1067–1073 (2015).
Kwon, H. et al. Maternal nutrient restriction reduces concentrations of amino acids and polyamines in ovine maternal and fetal plasma and fetal fluids1. Biol. Reprod. 71, 901–908 (2004).
Wu, G., Pond, W. G., Ott, T. & Bazer, F. W. Maternal dietary protein deficiency decreases amino acid concentrations in fetal plasma and allantoic fluid of pigs. J. Nutr. 128, 894–902 (1998).
Melendez, P. et al. Milk, plasma, and blood urea nitrogen concentrations, dietary protein, and fertility in dairy cattle. J. Am. Vet. Med. Assoc. 223, 628–634 (2003).
Alemneh, T. Urea metabolism and recycling in ruminants. Biomed. J. Sci. Tech. Res. https://doi.org/10.26717/BJSTR.2019.20.003401 (2019).
Stegink, L. D. Aspartate and Glutamate Metabolism (CRC Press, 1984).
Hou, K. et al. Microbiome and metabolic changes in milk in response to artemisinin supplementation in dairy cows. AMB Express 10, 154 (2020).
Špirková, A. et al. Glutamate can act as a signaling molecule in mouse preimplantation embryos. Biol. Reprod. https://doi.org/10.1093/biolre/ioac126 (2022).
Paudel, S., Guoyao, W. & Wang, X. Amino acids in cell signaling: Regulation and function. In Amino Acids in Nutrition and Health: Amino Acids in Gene Expression, Metabolic Regulation, and Exercising Performance (ed. Guoyao, W.) 17–33 (Springer International Publishing, Cham, 2021). https://doi.org/10.1007/978-3-030-74180-8_2.
Calderón-Leyva, G. et al. Effect of glutamate and/or testosterone administration on appetitive and consummatory sexual behaviors in pubertal rams and their influence on the reproductive performance of nulliparous anovulatory ewes. J. Vet. Behav. 30, 96–102 (2019).
Watford, M. & Wu, G. Glutamine metabolism in uricotelic species: Variation in skeletal muscle glutamine synthetase, glutaminase, glutamine levels and rates of protein synthesis. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 140, 607–614 (2005).
- SEO Powered Content & PR Distribution. Get Amplified Today.
- PlatoData.Network Vertical Generative Ai. Empower Yourself. Access Here.
- PlatoAiStream. Web3 Intelligence. Knowledge Amplified. Access Here.
- PlatoESG. Carbon, CleanTech, Energy, Environment, Solar, Waste Management. Access Here.
- PlatoHealth. Biotech and Clinical Trials Intelligence. Access Here.
- Source: https://www.nature.com/articles/s41598-024-60216-1