Search
Close this search box.

Metabolic imprinting in beef calves supplemented with creep feeding on performance, reproductive efficiency and metabolome profile – Scientific Reports

  • Dumont, B., Groot, J. C. J. & Tichit, M. Review: Make ruminants green again—how can sustainable intensification and agroecology converge for a better future?. Animal 12, s210–s219 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phillips, C. J. C. & Sorensen, J. T. Sustainability in cattle production systems. J. Agric. Environ. Ethics 6, 61–73 (1993).

    Article 

    Google Scholar
     

  • Nogueira, G. P. Puberty in South American Bos indicus (Zebu) cattle. Anim. Reprod. Sci. 82–83, 361–372 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Malafaia, G. C., Mores, G. de V., Casagranda, Y. G., Barcellos, J. O. J. & Costa, F. P. The Brazilian beef cattle supply chain in the next decades. Livest. Sci. 253, 104704 (2021).

  • Baruselli, P. S. et al. Applying assisted reproductive technology and reproductive management to reduce CO2-equivalent emission in dairy and beef cattle: A review. Anim. Reprod. https://doi.org/10.1590/1984-3143-ar2023-0060 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Abreu, L. Â., Rezende, V. T., Gameiro, A. H. & Baruselli, P. S. Effect of reduced age at first calving and an increased weaning rate on CO2 equivalent emissions in a cow-calf system. Rev. Eng. na Agric. REVENG 30, 311–318 (2022).


    Google Scholar
     

  • Cullen, B. R., Eckard, R. J., Timms, M. & Phelps, D. G. The effect of earlier mating and improving fertility on greenhouse gas emissions intensity of beef production in northern Australian herds. Rangel. J. 38, 283 (2016).

    Article 

    Google Scholar
     

  • D’Occhio, M. J., Baruselli, P. S. & Campanile, G. Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle: A review. Theriogenology 125, 277–284 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Amstalden, M., Alves, B. R. C., Liu, S., Cardoso, R. C. & Williams, G. L. Neuroendocrine pathways mediating nutritional acceleration of puberty: Insights from ruminant models. Front. Endocrinol. 2, 1–7 (2011).

    Article 

    Google Scholar
     

  • Freitas, B. G. et al. Relationship of body maturation with response to estrus synchronization and fixed-time AI in Nelore (Bos indicus) heifers. Livest. Sci. 251, 104632 (2021).

    Article 

    Google Scholar
     

  • Gasser, C. L. et al. Induction of precocious puberty in heifers III: Hastened reduction of estradiol negative feedback on secretion of luteinizing hormone1. J. Anim. Sci. 84, 2050–2056 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zieba, D. A., Amstalden, M. & Williams, G. L. Regulatory roles of leptin in reproduction and metabolism: A comparative review. Domest. Anim. Endocrinol. 29, 166–185 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scheffler, J. M. et al. Early metabolic imprinting events increase marbling scores in fed cattle. J. Anim. Sci. 92, 320–324 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kenéz, A. et al. Different milk feeding intensities during the first 4 weeks of rearing dairy calves: Part 3: Plasma metabolomics analysis reveals long-term metabolic imprinting in Holstein heifers. J. Dairy Sci. 101, 8446–8460 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hanley, B. et al. Metabolic imprinting, programming and epigenetics—a review of present priorities and future opportunities. Br. J. Nutr. 104, S1–S25 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lucas A. Programming by early nutrition in man. In Ciba Foundation Symposium 156‐The Childhood Environment and Adult Disease: The Childhood Environment and Adult Disease: Ciba Foundation Symposium 38–55 (John Wiley & Sons, Ltd., 1991)

  • Grove, K. L. & Smith, M. S. Ontogeny of the hypothalamic neuropeptide Y system. Physiol. Behav. 79, 47–63 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel, M. S., Srinivasan, M. & Laychock, S. G. Metabolic programming: Role of nutrition in the immediate postnatal life. J. Inherit. Metab. Dis. 32, 218–228 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, L. et al. Effects of birth weight and postnatal nutritional restriction on skeletal muscle development, myofiber maturation, and metabolic status of early-weaned piglets. Animals 10, 156 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soberon, F. & Van Amburgh, M. E. The effect of nutrient intake from milk or milk replacer of preweaned dairy calves on lactation milk yield as adults: A meta-analysis of current data1. J. Anim. Sci. 91, 706–712 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Faulkner, D. B. et al. Performance and nutrient metabolism by nursing calves supplemented with limited or unlimited corn or soyhulls. J. Anim. Sci. 72, 470–477 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moriel, P. & Arthington, J. D. Effects of trace mineral-fortified, limit-fed preweaning supplements on performance of pre- and postweaned beef calves. J. Anim. Sci. 91, 1371–1380 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valente, E. E. L. et al. Strategies of supplementation of female suckling calves and nutrition parameters of beef cows on tropical pasture. Trop. Anim. Health Prod. 44, 1803–1811 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Kelly, A. K. et al. Effect of calfhood nutrition on metabolic hormones, gonadotropins, and estradiol concentrations and on reproductive organ development in beef heifer calves. J. Anim. Sci. 98, 1–13 (2020).

    Article 

    Google Scholar
     

  • Guggeri, D. et al. Effect of different management systems on growth, endocrine parameters and puberty in Hereford female calves grazing Campos grassland. Livest. Sci. 167, 455–462 (2014).

    Article 

    Google Scholar
     

  • Cardoso, R. C., Alves, B. R. C., Sharpton, S. M., Williams, G. L. & Amstalden, M. Nutritional programming of accelerated puberty in Heifers: Involvement of pro-opiomelanocortin neurones in the arcuate nucleus. J. Neuroendocrinol. 27, 647–657 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garza, V., West, S. M. & Cardoso, R. C. Review: Gestational and postnatal nutritional effects on the neuroendocrine control of puberty and subsequent reproductive performance in heifers. Animal 17, 100782 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alves, B. R. C. et al. Nutritional programming of accelerated puberty in heifers: alterations in DNA methylation in the arcuate nucleus†,‡. Biol. Reprod. https://doi.org/10.1095/biolreprod.116.144741 (2016).

    Article 

    Google Scholar
     

  • D’Occhio, M. J., Baruselli, P. S. & Campanile, G. Metabolic health, the metabolome and reproduction in female cattle: A review. Ital. J. Anim. Sci. 18, 858–867 (2019).

    Article 

    Google Scholar
     

  • González, L. A. et al. Plasma metabolomics reveals major changes in carbohydrate, lipid, and protein metabolism of abruptly weaned beef calves. Sci. Rep. 13, 8176 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biol. 18, e3000411 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayres, H. et al. Validation of body condition score as a predictor of subcutaneous fat in Nelore (Bos indicus) cows. Livest. Sci. 123, 175–179 (2009).

    Article 

    Google Scholar
     

  • Williams, A. R. Ultrasound applications in beef cattle carcass research and management. J. Anim. Sci. 80, 183–188 (2002).

    Article 

    Google Scholar
     

  • Catussi, B. L. C. et al. Prepartum and/or postpartum supplementation with monensin-molasses multinutrient blocks to optimize fertility and calf performance in primiparous beef cows. Anim. Biosci. 35, 1675–1688 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Catussi, B. et al. Influence of nutrition and genetic selection for puberty on the reproductive response of Nelore heifers submitted to fixed-time AI and oocyte recovery with in vitro fertilization. Livest. Sci. 274, 105263 (2023).

    Article 

    Google Scholar
     

  • Wei, R., Li, G. & Seymour, A. B. High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. Anal. Chem. 82, 5527–5533 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • St-Pierre, N. R. Design and analysis of pen studies in the animal sciences. J. Dairy Sci. 90, E87–E99 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Pang, Z. et al. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carvalho, V. V. et al. A meta-analysis of the effects of creep-feeding supplementation on performance and nutritional characteristics by beef calves grazing on tropical pastures. Livest. Sci. 227, 175–182 (2019).

    Article 

    Google Scholar
     

  • Reis, M. M. et al. Creep-feeding to stimulate metabolic imprinting in nursing beef heifers: Impacts on heifer growth, reproductive and physiological variables. Animal 9, 1500–1508 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • da Silva, A. G. et al. Energetic-protein supplementation in the last 60days of gestation improves performance of beef cows grazing tropical pastures. J. Anim. Sci. Biotechnol. 8, 1–9 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Morrow, R. E., Stricker, J. A., Garner, G. B., Jacobs, V. E. & Hires, W. G. Cow-calf production on tall fescue-ladino clover pastures with and without nitrogen fertilization or creep feeding: Fall calves. J. Prod. Agric. 1, 145–148 (1988).

    Article 

    Google Scholar
     

  • Harvey, K. M., Cooke, R. F. & Moriel, P. Impacts of nutritional management during early postnatal life on long-term physiological and productive responses of beef cattle. Front. Anim. Sci. 2, 1–11 (2021).

    Article 

    Google Scholar
     

  • Felig, P., Pozefsk, T., Marlis, E. & Cahill, G. F. Alanine: Key role in gluconeogenesis. Science 167, 1003–1004 (1970).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, G. Amino Acids (CRC Press, 2013).

    Book 

    Google Scholar
     

  • Pallardó, F. V., Markovic, J., García, J. L. & Viña, J. Role of nuclear glutathione as a key regulator of cell proliferation. Mol. Aspects Med. 30, 77–85 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, G., Lupton, J. R., Turner, N. D., Fang, Y.-Z. & Yang, S. Glutathione metabolism and its implications for health. J. Nutr. 134, 489–492 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ennis, M. et al. Dietary phenylalanine and tyrosine requirements in healthy human pregnancy. Curr. Dev. Nutr. https://doi.org/10.1093/cdn/nzaa054_050 (2020).

    Article 
    PubMed Central 

    Google Scholar
     

  • Imaz, J. A., García, S. & González, L. A. The metabolomics profile of growth rate in grazing beef cattle. Sci. Rep. 12, 1–9 (2022).

    Article 

    Google Scholar
     

  • Gilbreath, K. R., Bazer, F. W., Carey Satterfield, M. & Guoyao, W. Amino acid nutrition and reproductive performance in ruminants. In Amino Acids in Nutrition and Health: Amino Acids in the Nutrition of Companion, Zoo and Farm Animals (ed. Guoyao, Wu.) 43–61 (Springer International Publishing, 2021). https://doi.org/10.1007/978-3-030-54462-1_4.

    Chapter 

    Google Scholar
     

  • Sampaio, R. L. et al. The nutritional interrelationship between the growing and finishing phases in crossbred cattle raised in a tropical system. Trop. Anim. Health Prod. 49, 1015–1024 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Silva, L. F. P., Dixon, R. M. & Costa, D. F. A. Nitrogen recycling and feed efficiency of cattle fed protein-restricted diets. Anim. Prod. Sci. 59, 2093–2107 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Titgemeyer, E. C. et al. Effect of forage quality on digestion and performance responses of cattle to supplementation with cooked molasses blocks. J. Anim. Sci. 82, 487–494 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tedeschi, L. O., Fox, D. G. & Tylutki, T. P. Potential environmental benefits of ionophores in ruminant diets. J. Environ. Qual. 32, 1591–1602 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lech, J. C. et al. What to feed or what not to feed-that is still the question. Metabolomics 17, 102 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nepomuceno, D. D. et al. Effect of pre-partum dam supplementation, creep-feeding and post-weaning feedlot on age at puberty in Nellore heifers. Livest. Sci. 195, 58–62 (2017).

    Article 

    Google Scholar
     

  • Moraes, J. G. N. et al. Analysis of the uterine lumen in fertility-classified heifers: II. Proteins and metabolites. Biol. Reprod. 102, 571–587 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hess, B. et al. Nutritional controls of beef cow reproduction. J. Anim. Sci. 83, E90–E106 (2005).

    Article 

    Google Scholar
     

  • Lane, M. & Gardner, D. K. Mitochondrial malate-aspartate shuttle regulates mouse embryo nutrient consumption. J. Biol. Chem. 280, 18361–18367 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borst, P. The malate–aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway. IUBMB Life 72, 2241–2259 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiltbank, M. C., Gümen, A. & Sartori, R. Physiological classification of anovulatory conditions in cattle. Theriogenology 57, 21–52 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell, M., Cashman, K. S., Gardner, D. K., Thompson, J. G. & Lane, M. Disruption of mitochondrial malate-aspartate shuttle activity in mouse blastocysts impairs viability and fetal growth. Biol. Reprod. 80, 295–301 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyle, J. Lehninger principles of biochemistry (4th ed.): Nelson, D., and Cox, M. In Biochemistry and Molecular Biology Education Vol. 33 (Macmillan, 2005).


    Google Scholar
     

  • Gao, H., Wu, G., Spencer, T. E., Johnson, G. A. & Bazer, F. W. Select nutrients in the ovine uterine lumen. V. Nitric oxide synthase, GTP cyclohydrolase, and ornithine decarboxylase in ovine uteri and peri-implantation conceptuses. Biol. Reprod. 81, 67–76 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santana, P. D. P. B. et al. Supplementation of bovine embryo culture medium with L-arginine improves embryo quality via nitric oxide production. Mol. Reprod. Dev. 81, 918–927 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruiz de Chávez, J. A. et al. Supplementation with rumen-protected L-arginine-HCl increased fertility in sheep with synchronized estrus. Trop. Anim. Health Prod. 47, 1067–1073 (2015).

    Article 

    Google Scholar
     

  • Kwon, H. et al. Maternal nutrient restriction reduces concentrations of amino acids and polyamines in ovine maternal and fetal plasma and fetal fluids1. Biol. Reprod. 71, 901–908 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, G., Pond, W. G., Ott, T. & Bazer, F. W. Maternal dietary protein deficiency decreases amino acid concentrations in fetal plasma and allantoic fluid of pigs. J. Nutr. 128, 894–902 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Melendez, P. et al. Milk, plasma, and blood urea nitrogen concentrations, dietary protein, and fertility in dairy cattle. J. Am. Vet. Med. Assoc. 223, 628–634 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alemneh, T. Urea metabolism and recycling in ruminants. Biomed. J. Sci. Tech. Res. https://doi.org/10.26717/BJSTR.2019.20.003401 (2019).

    Article 

    Google Scholar
     

  • Stegink, L. D. Aspartate and Glutamate Metabolism (CRC Press, 1984).


    Google Scholar
     

  • Hou, K. et al. Microbiome and metabolic changes in milk in response to artemisinin supplementation in dairy cows. AMB Express 10, 154 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Špirková, A. et al. Glutamate can act as a signaling molecule in mouse preimplantation embryos. Biol. Reprod. https://doi.org/10.1093/biolre/ioac126 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paudel, S., Guoyao, W. & Wang, X. Amino acids in cell signaling: Regulation and function. In Amino Acids in Nutrition and Health: Amino Acids in Gene Expression, Metabolic Regulation, and Exercising Performance (ed. Guoyao, W.) 17–33 (Springer International Publishing, Cham, 2021). https://doi.org/10.1007/978-3-030-74180-8_2.

    Chapter 

    Google Scholar
     

  • Calderón-Leyva, G. et al. Effect of glutamate and/or testosterone administration on appetitive and consummatory sexual behaviors in pubertal rams and their influence on the reproductive performance of nulliparous anovulatory ewes. J. Vet. Behav. 30, 96–102 (2019).

    Article 

    Google Scholar
     

  • Watford, M. & Wu, G. Glutamine metabolism in uricotelic species: Variation in skeletal muscle glutamine synthetase, glutaminase, glutamine levels and rates of protein synthesis. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 140, 607–614 (2005).

    Article 

    Google Scholar