Search
Close this search box.

Meta-analysis of identified genomic regions and candidate genes underlying salinity tolerance in rice (Oryza sativa L.) – Scientific Reports

  • Kumar, K. et al. Insights into genomics of salt stress response in rice. Rice 6(1), 1–15 (2013).

    Article 

    Google Scholar
     

  • Liu, C. et al. Salt tolerance in rice: Physiological responses and molecular mechanisms. Crop J. 10(1), 13–25 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Mirdar Mansuri, R. et al. Salt tolerance involved candidate genes in rice: an integrative meta-analysis approach. BMC Plant Biol. 20(1), 1–14 (2020).

    Article 

    Google Scholar
     

  • Ahmadizadeh, M. et al. Reproductive stage salinity tolerance in rice: a complex trait to phenotype. Indian J. Plant Physiol. 21, 528–536 (2016).

    Article 

    Google Scholar
     

  • Abhayawickrama, B., et al. Utilization of SNP-based highly saturated molecular map of a RIL population for the detection of QTLs and mining of candidate genes for salinity tolerance in rice (2020).

  • Nakhla, W. R. et al. Identification of QTLs for salt tolerance at the germination and seedling stages in rice. Plants 10(3), 428 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandit, A. et al. Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol. Genet. Genomics 284, 121–136 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. QTL identification for salt tolerance related traits at the seedling stage in indica rice using a multi-parent advanced generation intercross (MAGIC) population. Plant Growth Regul. 92, 365–373 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hossain, H. et al. Mapping of quantitative trait loci associated with reproductive-stage salt tolerance in rice. J. Agron. Crop Sci. 201(1), 17–31 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mondal, S. et al. Dissecting QTLs for reproductive stage salinity tolerance in rice from BRRI dhan 47. Plant Breed. Biotechnol. 7(4), 302–312 (2019).

    Article 

    Google Scholar
     

  • Pundir, P. et al. QTLs in salt rice variety CSR10 reveals salinity tolerance at reproductive stage. Acta Physiol. Plantarum 43, 1–15 (2021).

    Article 

    Google Scholar
     

  • Chattopadhyay, K. et al. Genetic dissection of component traits for salinity tolerance at reproductive stage in rice. Plant Mol. Biol. Rep. 39, 386–402 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Khahani, B. et al. Genome wide screening and comparative genome analysis for Meta-QTLs, ortho-MQTLs and candidate genes controlling yield and yield-related traits in rice. BMC Genomics 21, 1–24 (2020).

    Article 

    Google Scholar
     

  • Sandhu, N. et al. Meta-QTL analysis in rice and cross-genome talk of the genomic regions controlling nitrogen use efficiency in cereal crops revealing phylogenetic relationship. Front. Genet. 2021, 2609 (2021).


    Google Scholar
     

  • Lim, S. D. et al. Comprehensive analysis of the rice RING E3 ligase family reveals their functional diversity in response to abiotic stress. DNA Res. 20(3), 299–314 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saini, D. K. et al. Meta-QTLs, ortho-meta-QTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivum L.). Theor. Appl. Genet. 135(3), 1049–1081 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Semagn, K. et al. Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments. BMC Genomics 14(1), 1–16 (2013).

    Article 

    Google Scholar
     

  • Van, K. & McHale, L. K. Meta-analyses of QTLs associated with protein and oil contents and compositions in soybean [Glycine max (L.) Merr.] seed. Int. J. Mol. Sci. 18(6), 1180 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prakash, N. R. et al. Meta-analysis and validation of genomic loci governing seedling and reproductive stage salinity tolerance in rice. Physiol. Plantarum 174(1), e13629 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Arcade, A. et al. BioMercator: Integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20(14), 2324–2326 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goffinet, B. & Gerber, S. Quantitative trait loci: A meta-analysis. Genetics 155(1), 463–473 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sosnowski, O., Charcosset, A. & Joets, J. BioMercator V3: an upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics 28(15), 2082–2083 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khahani, B., Tavakol, E. & Shariati, V. J. Genome-wide meta-analysis on yield and yield-related QTLs in barley (Hordeum vulgare L.). Mol. Breed. 39, 1–16 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ganie, S. A. et al. Improving rice salt tolerance by precision breeding in a new era. Curr. Opin. Plant Biol. 60, 101996 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • drmjc/mjcstats documentation. (n.d.). Retrieved July 6, 2023, from https://rdrr.io/github/drmjc/mjcstats/man/ mjcstats documentation 2023.

  • Khahani, B. et al. Meta-QTL and ortho-MQTL analyses identified genomic regions controlling rice yield, yield-related traits and root architecture under water deficit conditions. Sci. Rep. 11(1), 6942 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orjuela, J. et al. A universal core genetic map for rice. Theor. Appl. Genet. 120, 563–572 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Endelman, J. B. & Plomion, C. LPmerge: an R package for merging genetic maps by linear programming. Bioinformatics 30(11), 1623–1624 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veyrieras, J.-B., Goffinet, B. & Charcosset, A. MetaQTL: A package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinform. 8(1), 1–16 (2007).

    Article 

    Google Scholar
     

  • Le, T. D. et al. Genome-wide association mapping of salinity tolerance at the seedling stage in a panel of Vietnamese landraces reveals new valuable QTLs for salinity stress tolerance breeding in rice. Plants 10(6), 1088 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, J. C. et al. Classification of rice (Oryza sativa L. Japonica nipponbare) immunophilins (FKBPs, CYPs) and expression patterns under water stress. BMC Plant Biol. 10, 1–22 (2010).

    Article 

    Google Scholar
     

  • Bonifacio, A. et al. Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant Cell Environ. 34(10), 1705–1722 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, X. et al. OsMSRA4. 1 and OsMSRB1. 1, two rice plastidial methionine sulfoxide reductases, are involved in abiotic stress responses. Planta 230, 227–238 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, N. et al. Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA–mediated regulatory pathway and ROS scavenging. PLoS Genet 14(10), e1007662 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, K. et al. Down-regulation of Os SPX 1 caused semi-male sterility, resulting in reduction of grain yield in rice. Plant Biotechnol. J. 14(8), 1661–1672 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, S. et al. A key ABA catabolic gene, OsABA8ox3, is involved in drought stress resistance in rice. PLoS ONE 10(2), e0116646 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasegawa, T. et al. Mutation of OUR1/OsbZIP1, which encodes a member of the basic leucine zipper transcription factor family, promotes root development in rice through repressing auxin signaling. Plant Sci. 306, 110861 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, K. et al. Rice transcription factor OsWRKY55 is involved in the drought response and regulation of plant growth. Int. J. Mol. Sci. 22(9), 4337 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, D. et al. Expression analysis of rice VQ genes in response to biotic and abiotic stresses. Gene 529(2), 208–214 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuenyong, W. et al. Downstream components of the calmodulin signaling pathway in the rice salt stress response revealed by transcriptome profiling and target identification. BMC Plant Biol. 18, 1–23 (2018).

    Article 

    Google Scholar
     

  • Zeng, J., Zhang, M. & Sun, X. Molecular hydrogen is involved in phytohormone signaling and stress responses in plants. PLoS ONE 8(8), e71038 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W., Zhou, X. & Wen, C.-K. Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development. J. Exp. Bot. 63(11), 4151–4164 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishnamurthy, S. et al. Introgressed saltol QTL lines improves the salinity tolerance in rice at seedling stage. Front. Plant Sci. 11, 833 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Somasundaram, S. et al. Homology modeling identifies crucial amino-acid residues that confer higher Na+ transport capacity of OcHKT1; 5 from Oryza coarctata Roxb. Plant Cell Physiol. 61(7), 1321–1334 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, G. et al. Unraveling the contribution of OsSOS2 in conferring salinity and drought tolerance in a high-yielding rice. Physiol. Plantarum 174(1), e13638 (2022).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Ahmadi, N. et al. Targeted association analysis identified japonica rice varieties achieving Na+/K+ homeostasis without the allelic make-up of the salt tolerant indica variety Nona Bokra. Theor. Appl. Genet. 123, 881–895 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, Y. et al. A quantitative trait locus, qSE 3, promotes seed germination and seedling establishment under salinity stress in rice. Plant J. 97(6), 1089–1104 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fukuda, A. et al. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta 233, 175–188 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Colmenero-Flores, J. M. et al. Identification and functional characterization of cation–chloride cotransporters in plants. Plant J. 50(2), 278–292 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, A. et al. Molecular cloning, functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (Oryza sativa L.). Plant Cell Physiol. 47(1), 32–42 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J.-I. et al. Molecular characterization of mature pollen-specific genes encoding novel small cysteine-rich proteins in rice (Oryza sativa L.). Plant Cell Rep. 25, 466–474 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chowrasia, S. et al. Identification of jumonjiC domain containing gene family among the Oryza species and their expression analysis in FL478, a salt tolerant rice genotype. Plant Physiol. Biochem. 130, 43–53 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, Q. et al. Rice APC/CTE controls tillering by mediating the degradation of MONOCULM 1. Nat. Commun. 3(1), 752 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rao, Y. et al. PE-1, encoding Heme Oxygenase 1, impacts heading date and chloroplast development in rice (Oryza sativa L.). J. Agric. Food Chem. 67(26), 7249–7257 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yue, J. et al. Comparative transcriptomic and metabolic profiling provides insight into the mechanism by which the autophagy inhibitor 3-MA enhances salt stress sensitivity in wheat seedlings. BMC Plant Biol. 21(1), 1–36 (2021).

    Article 

    Google Scholar
     

  • Li, G. Z. et al. Melatonin promotes potassium deficiency tolerance by regulating HAK1 transporter and its upstream transcription factor NAC71 in wheat. J. Pineal Res. 70(4), e12727 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q. et al. Dissecting the genetic basis of grain size and weight in barley (Hordeum vulgare L.) by QTL and comparative genetic analyses. Front. Plant Sci. 10, 469 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ganie, S. A., Pani, D. R. & Mondal, T. K. Genome-wide analysis of DUF221 domain-containing gene family in Oryza species and identification of its salinity stress-responsive members in rice. PLoS ONE 12(8), e0182469 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, M. et al. Expression of OsNHX1 gene in maize confers salt tolerance and promotes plant growth in the field. Plant Soil Environ. 53(11), 490 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Barrera, W. B. et al. Genetic diversity using single nucleotide polymorphisms (SNPs) and screening for salinity tolerance in rice germplasm at reproductive stage. Plant Genet. Resour. 17(6), 522–535 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Genome-wide analysis and identification of HAK potassium transporter gene family in maize (Zea mays L.). Mol. Biol. Rep. 39, 8465–8473 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, H. et al. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor. Appl. Genet. 108, 253–260 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Masood, M. S. et al. Mapping quantitative trait loci (QTLs) for salt tolerance in rice (Oryza sativa) using RFLPs. Pak. J. Bot 36(4), 825–834 (2004).


    Google Scholar
     

  • Ming-zhe, Y. et al. Inheritance and QTL mapping of salt tolerance in rice. Rice Sci. 12(1), 25 (2005).


    Google Scholar
     

  • Haq, T. U. et al. Genetic mapping of QTLs, controlling shoot fresh and dry weight under salt stress in rice (Oryza sativa L.) Cross between CO39× Moroberekan. Pak. J. Bot. 40(6), 2369–2381 (2008).

    CAS 

    Google Scholar
     

  • Ammar, M. et al. Mapping of QTLs controlling Na+, K+ and CI ion concentrations in salt tolerant indica rice variety CSR27. J. Plant Biochem. Biotechnol. 18, 139–150 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D.-M. et al. Mapping QTLs for salt tolerance in an introgression line population between japonica cultivars in rice. J. Crop Sci. Biotechnol. 12, 121–128 (2009).

    Article 

    Google Scholar
     

  • Islam, M. et al. QTL mapping for salinity tolerance at seedling stage in rice. Emirates J. Food Agric. 2011, 137–146 (2011).

    Article 

    Google Scholar
     

  • Javed, M. A. et al. Identification of QTLs for morph-physiological traits related to salinity tolerance at seedling stage in indica rice. Procedia Environ. Sci. 8, 389–395 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Tian, L. et al. Identification of quantitative trait loci associated with salt tolerance at seedling stage from Oryza rufipogon. J. Genet. Genomics 38(12), 593–601 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Quantitative trait loci controlling rice seed germination under salt stress. Euphytica 178, 297–307 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z. et al. Identification of QTLs with main, epistatic and QTL× environment interaction effects for salt tolerance in rice seedlings under different salinity conditions. Theor. Appl. Genet. 125, 807–815 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghomi, K. et al. Mapping QTLs for traits related to salinity tolerance at seedling stage of rice (Oryza sativa L.): an agrigenomics study of an Iranian rice population. Omics 17(5), 242–251 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohammadi, R. et al. Mapping quantitative trait loci associated with yield and yield components under reproductive stage salinity stress in rice (Oryza sativa L.). J. Genet. 92, 433–443 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koyama, M. L. et al. Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol. 125(1), 406–422 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, X. et al. Identification of salt tolerance-improving quantitative trait loci alleles from a salt-susceptible rice breeding line by introgression breeding. Plant Breed. 134(6), 653–660 (2015).

    Article 
    CAS 

    Google Scholar
     

  • De Leon, T. B., Linscombe, S. & Subudhi, P. K. Molecular dissection of seedling salinity tolerance in rice (Oryza sativa L.) using a high-density GBS-based SNP linkage map. Rice 9, 1–22 (2016).


    Google Scholar
     

  • Gimhani, D. et al. SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa). Mol. Genet. Genomics 291(6), 2081–2099 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan, M. S. K., Saeed, M. & Iqbal, J. Quantitative trait locus mapping for salt tolerance at maturity stage in indica rice using replicated F 2 population. Braz. J. Bot. 39, 641–650 (2016).

    Article 

    Google Scholar
     

  • Bizimana, J. B. et al. Identification of quantitative trait loci for salinity tolerance in rice (Oryza sativa L.) using IR29/Hasawi mapping population. J. Genet. 96, 571–582 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Leon, T. B., Linscombe, S. & Subudhi, P. K. Identification and validation of QTLs for seedling salinity tolerance in introgression lines of a salt tolerant rice landrace ‘Pokkali’. PLoS One 12(4), e0175361 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puram, V. R. R. et al. Genetic dissection of seedling stage salinity tolerance in rice using introgression lines of a salt tolerant landrace Nona Bokra. J. Heredity 108(6), 658–670 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rahman, M. A. et al. Mapping QTLs using a novel source of salinity tolerance from Hasawi and their interaction with environments in rice. Rice 10, 1–17 (2017).

    Article 

    Google Scholar
     

  • Puram, V. R. R., Ontoy, J. & Subudhi, P. K. Identification of QTLs for salt tolerance traits and prebreeding lines with enhanced salt tolerance in an introgression line population of rice. Plant Mol. Biol. Rep. 36, 695–709 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rahman, M. A. et al. Assessing trait contribution and mapping novel QTL for salinity tolerance using the Bangladeshi rice landrace Capsule. Rice 12, 1–18 (2019).

    Article 

    Google Scholar
     

  • Chen, T. et al. Identification of new QTL for salt tolerance from rice variety Pokkali. J. Agron. Crop Sci. 206(2), 202–213 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mazumder, A. et al. Identification and mapping of quantitative trait loci (QTL) and epistatic QTL for salinity tolerance at seedling stage in traditional aromatic short grain rice landrace Kolajoha (Oryza sativa L.) of Assam, India. Euphytica 216, 1–18 (2020).

    Article 

    Google Scholar
     

  • Kumari, S. et al. Expression of a cyclophilin OsCyp2-P isolated from a salt-tolerant landrace of rice in tobacco alleviates stress via ion homeostasis and limiting ROS accumulation. Funct. Integrat. Genomics 15, 395–412 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. A clock regulatory module is required for salt tolerance and control of heading date in rice. Plant Cell Environ. 44(10), 3283–3301 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, T. et al. Genome-wide analysis of the IQM gene family in rice (Oryza sativa L.). Plants 10(9), 1949 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, A.-L. et al. Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice. BMB Rep. 46(1), 31 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Tissue-specific ubiquitination by IPA1 INTERACTING PROTEIN1 modulates IPA1 protein levels to regulate plant architecture in rice. Plant Cell 29(4), 697–707 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chhun, T. et al. Saturated humidity accelerates lateral root development in rice (Oryza sativa L.) seedlings by increasing phloem-based auxin transport. J. Exp. Bot. 58(7), 1695–1704 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, D.-F. et al. Calmodulin isoform-specific activation of a rice calmodulin-binding kinase conferred by only three amino-acids of OsCaM61. FEBS Lett. 580(18), 4325–4331 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kushwaha, H. R. et al. MATH-domain family shows response toward abiotic stress in Arabidopsis and rice. Front. Plant Sci. 7, 923 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghosh, A. et al. A glutathione responsive rice glyoxalase II, Os GLYII-2, functions in salinity adaptation by maintaining better photosynthesis efficiency and anti-oxidant pool. Plant J. 80(1), 93–105 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Rice potassium transporter OsHAK8 mediates K+ uptake and translocation in response to low K+ stress. Front. Plant Sci. 12, 730002 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, G.-Y. et al. A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234, 47–59 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J., Peng, Y. & Guo, Z. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Res. 18(4), 508–521 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhiguo, E. et al. Characterization of the ubiquitin-conjugating enzyme gene family in rice and evaluation of expression profiles under abiotic stresses and hormone treatments. PLoS One 10(4), e0122621 (2015).

    Article 

    Google Scholar
     

  • Song, Y., Wang, L. & Xiong, L. Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta 229, 577–591 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, H. et al. Ectopic overexpression of the transcription factor OsGLK1 induces chloroplast development in non-green rice cells. Plant Cell Physiol. 50(11), 1933–1949 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai, J. et al. Rice aquaporin OsPIP2; 2 is a water-transporting facilitator in relevance to drought-tolerant responses. Plant Direct 5(8), e338 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. OsNAC45 is involved in ABA response and salt tolerance in rice. Rice 13(1), 1–13 (2020).

    Article 

    Google Scholar
     

  • Vishal, B. et al. Os TPS 8 controls yield-related traits and confers salt stress tolerance in rice by enhancing suberin deposition. New Phytol. 221(3), 1369–1386 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iordachescu, M. & Imai, R. Trehalose biosynthesis in response to abiotic stresses. J. Integrat. Plant Biol. 50(10), 1223–1229 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Peethambaran, P. K. et al. Salt-inducible expression of OsJAZ8 improves resilience against salt-stress. BMC Plant Biol. 18(1), 1–15 (2018).

    Article 

    Google Scholar
     

  • Schmidt, R. et al. Transcription factor OsHsfC1b regulates salt tolerance and development in Oryza sativa ssp. japonica. AoB Plants 2012, pls011 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, X. et al. A novel insight into functional divergence of the MST gene family in rice based on comprehensive expression patterns. Genes 10(3), 239 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, T. et al. Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genomics 9(1), 1–21 (2008).

    Article 

    Google Scholar
     

  • Li, H.-W. et al. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234, 1007–1018 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Three CCT domain-containing genes were identified to regulate heading date by candidate gene-based association mapping and transformation in rice. Sci. Rep. 5(1), 7663 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. et al. The calcium sensor OsCBL1 modulates nitrate signaling to regulate seedling growth in rice. PLoS One 14(11), e0224962 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Z. et al. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol. 137(1), 176–189 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar