Search
Close this search box.

Mesenchymal stem cell-derived extracellular vesicles: a regulator and carrier for targeting bone-related diseases – Cell Death Discovery

  • Shi C, Wu T, He Y, Zhang Y, Fu D. Recent advances in bone-targeted therapy. Pharmacol Ther. 2020;207:107473. https://doi.org/10.1016/j.pharmthera.2020.107473.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng H, Chawla A, Yang Y, Li Y, Zhang J, Jang HL, et al. Development of nanomaterials for bone-targeted drug delivery. Drug Discov Today. 2017;22:1336–50. https://doi.org/10.1016/j.drudis.2017.04.021.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernardes de Jesus B, Schneeberger K, Vera E, Tejera A, Harley CB, Blasco MA. The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell. 2011;10:604–21. https://doi.org/10.1111/j.1474-9726.2011.00700.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang C, Tian Y, Zhao F, Chen Z, Su P, Li Y, et al. Bone microenvironment and osteosarcoma metastasis. Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21196985.

  • Li J, Yin Z, Huang B, Xu K, Su J. Stat3 signaling pathway: a future therapeutic target for bone-related diseases. Front Pharmacol. 2022;13:897539. https://doi.org/10.3389/fphar.2022.897539.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu L, Xu A, Gao F, Tian C, Wang H, Zhang J, et al. Mesenchymal stem cell-derived exosomes as a novel strategy for the treatment of intervertebral disc degeneration. Front. Cell Dev Biol. 2021;9:770510. https://doi.org/10.3389/fcell.2021.770510.

    Article 
    PubMed 

    Google Scholar
     

  • Hu ZL, Li HY, Chang X, Li YY, Liu CH, Gao XX, et al. Exosomes derived from stem cells as an emerging therapeutic strategy for intervertebral disc degeneration. World J Stem Cells. 2020;12:803–13. https://doi.org/10.4252/wjsc.v12.i8.803.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang F, Guo J, Zhang Z, Qian Y, Wang G, Duan M, et al. Mesenchymal stem cell-derived exosome: a tumor regulator and carrier for targeted tumor therapy. Cancer Lett. 2022;526:29–40. https://doi.org/10.1016/j.canlet.2021.11.015.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerami MH, Khorram R, Rasoolzadegan S, Mardpour S, Nakhaei P, Hashemi S, et al. Emerging role of mesenchymal stem/stromal cells (MSCs) and MSCs-derived exosomes in bone- and joint-associated musculoskeletal disorders: a new frontier. Eur J Med Res. 2023;28:86. https://doi.org/10.1186/s40001-023-01034-5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu V, Tennyson M, Zhang J, Khan W. Mesenchymal stem cell-derived extracellular vesicles in tendon and ligament repair-a systematic review of in vivo studies. Cells. 2021;10. https://doi.org/10.3390/cells10102553.

  • Lui PPY. Mesenchymal stem cell-derived extracellular vesicles for the promotion of tendon repair – an update of literature. Stem Cell Rev Rep. 2021;17:379–89. https://doi.org/10.1007/s12015-020-10023-8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun H, Pratt RE, Hodgkinson CP, Dzau VJ. Sequential paracrine mechanisms are necessary for the therapeutic benefits of stem cell therapy. Am J Physiol Cell Physiol. 2020;319:C1141–C1150. https://doi.org/10.1152/ajpcell.00516.2019.

    Article 
    PubMed 

    Google Scholar
     

  • Shah R, Patel T, Freedman JE. Circulating extracellular vesicles in human disease. N Engl J Med. 2018;379:958–66. https://doi.org/10.1056/NEJMra1704286.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nooshabadi VT, Mardpour S, Yousefi-Ahmadipour A, Allahverdi A, Izadpanah M, Daneshimehr F, et al. The extracellular vesicles-derived from mesenchymal stromal cells: a new therapeutic option in regenerative medicine. J Cell Biochem. 2018;119:8048–73. https://doi.org/10.1002/jcb.26726.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Timmers L, Pasterkamp G, de Hoog VC, Arslan F, Appelman Y, de Kleijn DP. The innate immune response in reperfused myocardium. Cardiovasc Res. 2012;94:276–83. https://doi.org/10.1093/cvr/cvs018.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM. Exosome mediated communication within the tumor microenvironment. J Control Release: Off J Control Release Soc. 2015;219:278–94. https://doi.org/10.1016/j.jconrel.2015.06.029.

    Article 
    CAS 

    Google Scholar
     

  • Marar C, Starich B, Wirtz D. Extracellular vesicles in immunomodulation and tumor progression. Nat. Immunol. 2021;22:560–70. https://doi.org/10.1038/s41590-021-00899-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou E, Li Y, Wu F, Guo M, Xu J, Wang S, et al. Circulating extracellular vesicles are effective biomarkers for predicting response to cancer therapy. EBioMedicine. 2021;67:103365. https://doi.org/10.1016/j.ebiom.2021.103365.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohayon L, Zhang X, Dutta P. The role of extracellular vesicles in regulating local and systemic inflammation in cardiovascular disease. Pharmacol Res. 2021;170:105692. https://doi.org/10.1016/j.phrs.2021.105692.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou J, Yang W, Cui W, Li C, Ma C, Ji X, et al. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon-bone healing. J Nanobiotechnol. 2023;21:14. https://doi.org/10.1186/s12951-023-01778-6.

    Article 
    CAS 

    Google Scholar
     

  • Liu N, Dong J, Li L, Liu F. Osteoimmune interactions and therapeutic potential of macrophage-derived small extracellular vesicles in bone-related diseases. Int J Nanomed. 2023;18:2163–80. https://doi.org/10.2147/ijn.S403192.

    Article 
    CAS 

    Google Scholar
     

  • Wei W, Ao Q, Wang X, Cao Y, Liu Y, Zheng SG, et al. Mesenchymal stem cell-derived exosomes: a promising biological tool in nanomedicine. Front Pharmacol. 2020;11:590470. https://doi.org/10.3389/fphar.2020.590470.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35:2383–90. https://doi.org/10.1016/j.biomaterials.2013.11.083.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Li X, Wang S, Cui J, Ren X, Su J. Bone-targeted exosomes: strategies and applications. Adv Healthc Mater. 2023;12:e2203361. https://doi.org/10.1002/adhm.202203361.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28. https://doi.org/10.1038/nrm.2017.125.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin B, Ni J, Witherel CE, Yang M, Burdick JA, Wen C, et al. Harnessing tissue-derived extracellular vesicles for osteoarthritis theranostics. Theranostics. 2022;12:207–31. https://doi.org/10.7150/thno.62708.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura T, Yoshioka Y, Sakamoto S, Ichikawa T, Ochiya T. Extracellular vesicles in bone homeostasis: key roles of physiological and pathological conditions. J Bone Miner Metab. 2023;41:345–57. https://doi.org/10.1007/s00774-022-01362-2.

    Article 
    PubMed 

    Google Scholar
     

  • Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89. https://doi.org/10.1146/annurev-cellbio-101512-122326.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Z, Rodriguez NE, Zhao J, Ramey AN, Hyzy SL, Boyan BD, et al. Selective enrichment of microRNAs in extracellular matrix vesicles produced by growth plate chondrocytes. Bone. 2016;88:47–55. https://doi.org/10.1016/j.bone.2016.03.018.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang X, Yang J, Lei P, Wen T. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging. 2019;11:8777–91. https://doi.org/10.18632/aging.102264.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu D, Chang X, Tian J, Kang L, Wu Y, Liu J, et al. Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis. J Nanobiotechnol. 2021;19:209. https://doi.org/10.1186/s12951-021-00958-6.

    Article 
    CAS 

    Google Scholar
     

  • Behera J, Kumar A, Voor MJ, Tyagi N. Exosomal lncRNA-H19 promotes osteogenesis and angiogenesis through mediating Angpt1/Tie2-NO signaling in CBS-heterozygous mice. Theranostics. 2021;11:7715–34. https://doi.org/10.7150/thno.58410.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu W, Li L, Rong Y, Qian D, Chen J, Zhou Z, et al. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater. 2020;103:196–212. https://doi.org/10.1016/j.actbio.2019.12.020.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao Y, Zhou J, Wang Z, Tao H, Bai J, Ge G, et al. Human bone mesenchymal stem cells-derived exosomal miRNA-361-5p alleviates osteoarthritis by downregulating DDX20 and inactivating the NF-κB signaling pathway. Bioorg Chem. 2021;113:104978. https://doi.org/10.1016/j.bioorg.2021.104978.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Cao X, Li P, Fan Y, Zhang L, Ma X, et al. microRNA-935-modified bone marrow mesenchymal stem cells-derived exosomes enhance osteoblast proliferation and differentiation in osteoporotic rats. Life Sci. 2021;272:119204. https://doi.org/10.1016/j.lfs.2021.119204.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Thomsen P. Mesenchymal stem cell-derived small extracellular vesicles and bone regeneration. Basic Clin Pharmacol Toxicol. 2021;128:18–36. https://doi.org/10.1111/bcpt.13478.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu JF, Yang GH, Pan XH, Zhang SJ, Zhao C, Qiu BS, et al. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. PloS One. 2014;9:e114627. https://doi.org/10.1371/journal.pone.0114627.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao P, Xiao L, Peng J, Qian YQ, Huang CC. Exosomes derived from bone marrow mesenchymal stem cells improve osteoporosis through promoting osteoblast proliferation via MAPK pathway. Eur Rev Med Pharmacol Sci. 2018;22:3962–70. https://doi.org/10.26355/eurrev_201806_15280.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen K, Duan A, Cheng J, Yuan T, Zhou J, Song H, et al. Exosomes derived from hypoxia preconditioned mesenchymal stem cells laden in a silk hydrogel promote cartilage regeneration via the miR-205-5p/PTEN/AKT pathway. Acta Biomater. 2022;143:173–88. https://doi.org/10.1016/j.actbio.2022.02.026.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan L, Dong J, He X, Zhang C, Zhang T. Bone marrow mesenchymal stem cells-derived exosomes reduce apoptosis and inflammatory response during spinal cord injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway. Hum Exp Toxicol. 2021;40:1612–23. https://doi.org/10.1177/09603271211003311.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu G, Xia Y, Zhao Z, Li A, Li H, Xiao T. LncRNA XIST from the bone marrow mesenchymal stem cell derived exosome promotes osteosarcoma growth and metastasis through miR-655/ACLY signal. Cancer Cell Int. 2022;22:330. https://doi.org/10.1186/s12935-022-02746-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi H, Liu DP, Xiao DW, Tian DC, Su YW, Jin SF. Exosomes derived from mesenchymal stem cells inhibit mitochondrial dysfunction-induced apoptosis of chondrocytes via p38, ERK, and Akt pathways. Vitr Cell Dev Biol Anim. 2019;55:203–10. https://doi.org/10.1007/s11626-019-00330-x.

    Article 
    CAS 

    Google Scholar
     

  • Li H, Liu D, Li C, Zhou S, Tian D, Xiao D, et al. Exosomes secreted from mutant-HIF-1α-modified bone-marrow-derived mesenchymal stem cells attenuate early steroid-induced avascular necrosis of femoral head in rabbit. Cell Biol Int. 2017;41:1379–90. https://doi.org/10.1002/cbin.10869.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang S, He T, Jiang J, Li Y, Chen P. Osteogenic effect of tsRNA-10277-loaded exosome derived from bone mesenchymal stem cells on steroid-induced osteonecrosis of the femoral head. Drug Des Dev Ther. 2020;14:4579–91. https://doi.org/10.2147/dddt.S258024.

    Article 
    CAS 

    Google Scholar
     

  • Xie Y, Chen Y, Zhang L, Ge W, Tang P. The roles of bone-derived exosomes and exosomal microRNAs in regulating bone remodelling. J Cell Mol Med. 2017;21:1033–41. https://doi.org/10.1111/jcmm.13039.

    Article 
    PubMed 

    Google Scholar
     

  • Cui K, Chen Y, Zhong H, Wang N, Zhou L, Jiang F. Transplantation of IL-10-overexpressing bone marrow-derived mesenchymal stem cells ameliorates diabetic-induced impaired fracture healing in mice. Cell Mol Bioeng. 2020;13:155–63. https://doi.org/10.1007/s12195-019-00608-w.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakao Y, Fukuda T, Zhang Q, Sanui T, Shinjo T, Kou X, et al. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater. 2021;122:306–24. https://doi.org/10.1016/j.actbio.2020.12.046.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu GD, Cheng P, Liu T, Wang Z. BMSC-derived exosomal miR-29a promotes angiogenesis and osteogenesis. Front. Cell Dev Biol. 2020;8:608521. https://doi.org/10.3389/fcell.2020.608521.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Jiao G, Ren S, Zhang X, Li C, Wu W, et al. Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion. Stem Cell Res Ther. 2020;11:38. https://doi.org/10.1186/s13287-020-1562-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu B, Xu X, Yi P, Hao Y. Curcumin reinforces MSC-derived exosomes in attenuating osteoarthritis via modulating the miR-124/NF-kB and miR-143/ROCK1/TLR9 signalling pathways. J Cell Mol Med. 2020;24:10855–65. https://doi.org/10.1111/jcmm.15714.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Q, Shen X, Chen Y, Chen J, Li Y. Osteoblasts-derived exosomes regulate osteoclast differentiation through miR-503-3p/Hpse axis. Acta Histochem. 2021;123:151790. https://doi.org/10.1016/j.acthis.2021.151790.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen J, Hendriks M, Chatzis A, Ramasamy SK, Kusumbe AP. Bone vasculature and bone marrow vascular niches in health and disease. J Bone Miner Res Off J Am Soc Bone Miner Res. 2020;35:2103–20. https://doi.org/10.1002/jbmr.4171.

    Article 
    CAS 

    Google Scholar
     

  • Meeson R, Sanghani-Keri A, Coathup M, Blunn G. VEGF with AMD3100 endogenously mobilizes mesenchymal stem cells and improves fracture healing. J Orthop Res Off Publ Orthop Res Soc. 2019;37:1294–302. https://doi.org/10.1002/jor.24164.

    Article 
    CAS 

    Google Scholar
     

  • Wang CY, Yang HB, Hsu HS, Chen LL, Tsai CC, Tsai KS, et al. Mesenchymal stem cell-conditioned medium facilitates angiogenesis and fracture healing in diabetic rats. J Tissue Eng Regenerat Med. 2012;6:559–69. https://doi.org/10.1002/term.461.

    Article 
    CAS 

    Google Scholar
     

  • Kasper G, Dankert N, Tuischer J, Hoeft M, Gaber T, Glaeser JD, et al. Mesenchymal stem cells regulate angiogenesis according to their mechanical environment. Stem Cells (Dayt, Ohio). 2007;25:903–10. https://doi.org/10.1634/stemcells.2006-0432.

    Article 
    CAS 

    Google Scholar
     

  • Wang R, Xu B. TGFβ1-modified MSC-derived exosome attenuates osteoarthritis by inhibiting PDGF-BB secretion and H-type vessel activity in the subchondral bone. Acta Histochem. 2022;124:151933. https://doi.org/10.1016/j.acthis.2022.151933.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Y, He B, Wang L, Yuan B, Shu H, Zhang F, et al. Bone marrow mesenchymal stem cell-derived exosomes promote rotator cuff tendon-bone healing by promoting angiogenesis and regulating M1 macrophages in rats. Stem Cell Res Ther. 2020;11:496. https://doi.org/10.1186/s13287-020-02005-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Freire Valls A, Schermann G, Shen Y, Moya IM, Castro L, et al. YAP/TAZ orchestrate VEGF signaling during developmental angiogenesis. Dev Cell. 2017;42:462–478.e467. https://doi.org/10.1016/j.devcel.2017.08.002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tutuianu R, Rosca AM, Iacomi DM, Simionescu M, Titorencu I. Human mesenchymal stromal cell-derived exosomes promote in vitro wound healing by modulating the biological properties of skin keratinocytes and fibroblasts and stimulating angiogenesis. Int J Mol Sci. 2021; 22. https://doi.org/10.3390/ijms22126239.

  • Becerra J, Andrades JA, Guerado E, Zamora-Navas P, López-Puertas JM, Reddi AH. Articular cartilage: structure and regeneration. Tissue Eng. Part B, Rev. 2010;16:617–27. https://doi.org/10.1089/ten.TEB.2010.0191.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nee LE, McMorrow T, Campbell E, Slattery C, Ryan MP. TNF-alpha and IL-1beta-mediated regulation of MMP-9 and TIMP-1 in renal proximal tubular cells. Kidney Int. 2004;66:1376–86. https://doi.org/10.1111/j.1523-1755.2004.00900.x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vincenti MP, Brinckerhoff CE. Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res. 2002;4:157–64. https://doi.org/10.1186/ar401.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cosenza S, Ruiz M, Toupet K, Jorgensen C, Noël D. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep. 2017;7:16214. https://doi.org/10.1038/s41598-017-15376-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Buul GM, Villafuertes E, Bos PK, Waarsing JH, Kops N, Narcisi R, et al. Mesenchymal stem cells secrete factors that inhibit inflammatory processes in short-term osteoarthritic synovium and cartilage explant culture. Osteoarthr Cartil. 2012;20:1186–96. https://doi.org/10.1016/j.joca.2012.06.003.

    Article 

    Google Scholar
     

  • Zeng Z, Dai Y, Deng S, Zou S, Dou T, Wei F. Synovial mesenchymal stem cell-derived extracellular vesicles alleviate chondrocyte damage during osteoarthritis through microRNA-130b-3p-mediated inhibition of the LRP12/AKT/β-catenin axis. Immunopharmacol Immunotoxicol. 2022;44:247–60. https://doi.org/10.1080/08923973.2022.2038192.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Li F, Ban W, Zhang J, Zhang G. Human bone marrow mesenchymal stromal cell-derived extracellular vesicles promote proliferation of degenerated nucleus pulposus cells and the synthesis of extracellular matrix through the SOX4/Wnt/β-Catenin axis. Front. Physiol. 2021;12:723220. https://doi.org/10.3389/fphys.2021.723220.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou X, Cao H, Guo J, Yuan Y, Ni G. Effects of BMSC-derived EVs on bone metabolism. Pharmaceutics. 2022; 14. https://doi.org/10.3390/pharmaceutics14051012.

  • Lian JB, Stein GS, Javed A, van Wijnen AJ, Stein JL, Montecino M, et al. Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr. Metab Disord. 2006;7:1–16. https://doi.org/10.1007/s11154-006-9001-5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han L, Liu H, Fu H, Hu Y, Fang W, Liu J. Exosome-delivered BMP-2 and polyaspartic acid promotes tendon bone healing in rotator cuff tear via Smad/RUNX2 signaling pathway. Bioengineered. 2022;13:1459–75. https://doi.org/10.1080/21655979.2021.2019871.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hjorthaug GA, Søreide E, Nordsletten L, Madsen JE, Reinholt FP, Niratisairak S, et al. Negative effect of zoledronic acid on tendon-to-bone healing. Acta Orthopaedica. 2018;89:360–3. https://doi.org/10.1080/17453674.2018.1440189.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao F, Ma X, Qiu W, Wang P, Zhang R, Chen Z, et al. Mesenchymal MACF1 Facilitates SMAD7 Nuclear Translocation to Drive Bone Formation. Cells. 2020; 9. https://doi.org/10.3390/cells9030616.

  • Feng W, Jin Q, Ming-Yu Y, Yang H, Xu T, You-Xing S, et al. MiR-6924-5p-rich exosomes derived from genetically modified Scleraxis-overexpressing PDGFRα(+) BMMSCs as novel nanotherapeutics for treating osteolysis during tendon-bone healing and improving healing strength. Biomaterials. 2021;279:121242. https://doi.org/10.1016/j.biomaterials.2021.121242.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu Y, Zhang Y, Ni CY, Chen CY, Rao SS, Yin H, et al. Human umbilical cord mesenchymal stromal cells-derived extracellular vesicles exert potent bone protective effects by CLEC11A-mediated regulation of bone metabolism. Theranostics. 2020;10:2293–308. https://doi.org/10.7150/thno.39238.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuzaka Y, Yashiro R, Therapeutic Strategy of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles as Regenerative Medicine. Int J Mol Sci. 2022; 23. https://doi.org/10.3390/ijms23126480.

  • Ogbechi J, Clanchy FI, Huang YS, Topping LM, Stone TW, Williams RO. IDO activation, inflammation and musculoskeletal disease. Exp Gerontol. 2020;131:110820. https://doi.org/10.1016/j.exger.2019.110820.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demoruelle MK, Deane KD, Holers VM. When and where does inflammation begin in rheumatoid arthritis? Curr Opin Rheumatol. 2014;26:64–71. https://doi.org/10.1097/bor.0000000000000017.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sebastião AI, Ferreira I, Brites G, Silva A, Neves BM, Teresa Cruz M, NLRP3 Inflammasome and Allergic Contact Dermatitis: A Connection to Demystify, Pharmaceutics. 12. https://doi.org/10.3390/pharmaceutics12090867 (2020)

  • Jia M, Lv Y, Xu Y, Gong Z. A comparative analysis of NLRP3-related inflammatory mediators in synovial fluid in temporomandibular joint osteoarthritis and internal derangement. BMC Musculoskelet. Disord. 2021;22:229. https://doi.org/10.1186/s12891-021-04092-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weyand CM, Goronzy JJ. The immunology of rheumatoid arthritis. Nat. Immunol. 2021;22:10–18. https://doi.org/10.1038/s41590-020-00816-x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao F, Chiu SM, Motan DA, Zhang Z, Chen L, Ji HL, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7:e2062. https://doi.org/10.1038/cddis.2015.327.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho DI, Kim MR, Jeong HY, Jeong HC, Jeong MH, Yoon SH, et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp Mol Med. 2014;46:e70. https://doi.org/10.1038/emm.2013.135.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheung TS, Galleu A, von Bonin M, Bornhäuser M, Dazzi F. Apoptotic mesenchymal stromal cells induce prostaglandin E2 in monocytes: implications for the monitoring of mesenchymal stromal cell activity. Haematologica. 2019;104:e438–e441. https://doi.org/10.3324/haematol.2018.214767.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Liu R, Huang T, Sun H, Jiang H. Adipose stem cells-released extracellular vesicles as a next-generation cargo delivery vehicles: a survey of minimal information implementation, mass production and functional modification. Stem Cell Res Ther. 2022;13:182. https://doi.org/10.1186/s13287-022-02849-5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouffi C, Bony C, Courties G, Jorgensen C, Noël D. IL-6-dependent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis. PloS One. 2010;5:e14247. https://doi.org/10.1371/journal.pone.0014247.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Y, Kang X, Wang Y, Bian X, He G, Zhou M, et al. Exosomes derived from bone marrow stromal cells (BMSCs) enhance tendon-bone healing by regulating macrophage polarization. Med Sci Monit: Int Med J Exp Clin Res. 2020;26:e923328. https://doi.org/10.12659/msm.923328.

    Article 
    CAS 

    Google Scholar
     

  • Xu J, Ye Z, Han K, Zheng T, Zhang T, Dong S, et al. Infrapatellar fat pad mesenchymal stromal cell-derived exosomes accelerate tendon-bone healing and intra-articular graft remodeling after anterior cruciate ligament reconstruction. Am J Sports Med. 2022;50:662–73. https://doi.org/10.1177/03635465211072227.

    Article 
    PubMed 

    Google Scholar
     

  • Li Z, Li Q, Tong K, Zhu J, Wang H, Chen B, et al. BMSC-derived exosomes promote tendon-bone healing after anterior cruciate ligament reconstruction by regulating M1/M2 macrophage polarization in rats. Stem Cell Res Ther. 2022;13:295. https://doi.org/10.1186/s13287-022-02975-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heilig R, Dick MS, Sborgi L, Meunier E, Hiller S, Broz P. The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur J Immunol. 2018;48:584–92. https://doi.org/10.1002/eji.201747404.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Q, Wang W, Yang F, Wang H, Zhao X, Zhou Y, et al. Disulfiram suppressed peritendinous fibrosis through inhibiting macrophage accumulation and its pro-inflammatory properties in tendon bone healing. Front Bioeng Biotechnol. 2022;10:823933. https://doi.org/10.3389/fbioe.2022.823933.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei H, Chen J, Wang S, Fu F, Zhu X, Wu C, Lin J. et al. A nanodrug consisting of doxorubicin and exosome derived from mesenchymal stem cells for osteosarcoma treatment in vitro. Int. J. Nanomed.2019;14:8603–10. https://doi.org/10.2147/ijn.S218988.

    Article 
    CAS 

    Google Scholar
     

  • Kalluri R, LeBleu VS, The biology, function, and biomedical applications of exosomes. Science (New York, N.Y.). 2020; 367. https://doi.org/10.1126/science.aau6977.

  • Saint-Pol J, Gosselet F, Duban-Deweer S, Pottiez G, Karamanos Y. Targeting and crossing the blood-brain barrier with extracellular vesicles. Cells. 2020; 9. https://doi.org/10.3390/cells9040851.

  • Sharma S, Masud MK, Kaneti YV, Rewatkar P, Koradia A, Hossain MSA, et al. Extracellular vesicle nanoarchitectonics for novel drug delivery applications. Small (Weinh Der Bergstr, Ger). 2021;17:e2102220. https://doi.org/10.1002/smll.202102220.

    Article 
    CAS 

    Google Scholar
     

  • Yeo RW, Lai RC, Zhang B, Tan SS, Yin Y, Teh BJ, et al. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev. 2013;65:336–41. https://doi.org/10.1016/j.addr.2012.07.001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol. 2014;32:252–60. https://doi.org/10.1038/nbt.2816.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ortega-Pineda L, Sunyecz A, Salazar-Puerta AI, Rincon-Benavides MA, Alzate-Correa D, Anaparthi AL, et al. Designer extracellular vesicles modulate pro-neuronal cell responses and improve intracranial retention. Adv Healthc Mater. 2022;11:e2100805. https://doi.org/10.1002/adhm.202100805.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7:653–64. https://doi.org/10.1038/nrclinonc.2010.139.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang F, Guo J, Zhang Z, Duan M, Wang G, Qian Y, et al. Application of engineered extracellular vesicles for targeted tumor therapy. J Biomed Sci. 2022;29:14. https://doi.org/10.1186/s12929-022-00798-y.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Controlled Release: Off J Controlled Release Soc. 2015;207:18–30. https://doi.org/10.1016/j.jconrel.2015.03.033.

    Article 
    CAS 

    Google Scholar
     

  • Kooijmans SAA, Stremersch S, Braeckmans K, de Smedt SC, Hendrix A, Wood MJA, et al. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Controlled Release: Off J Controlled Release Soc. 2013;172:229–38. https://doi.org/10.1016/j.jconrel.2013.08.014.

    Article 
    CAS 

    Google Scholar
     

  • Jia Y, Lu T, Chen Q, Pu X, Ji L, Yang J, et al. Exosomes secreted from sonic hedgehog-modified bone mesenchymal stem cells facilitate the repair of rat spinal cord injuries. Acta Neurochirurgica. 2021;163:2297–306. https://doi.org/10.1007/s00701-021-04829-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Wang J, Wang P, Zhong L, Wang S, Feng Q, et al. Hypoxia-pretreated mesenchymal stem cell-derived exosomes-loaded low-temperature extrusion 3D-printed implants for neural regeneration after traumatic brain injury in canines. Front Bioeng Biotechnol. 2022;10:1025138. https://doi.org/10.3389/fbioe.2022.1025138.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bosch S, de Beaurepaire L, Allard M, Mosser M, Heichette C, Chrétien D, et al. Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep. 2016;6:36162. https://doi.org/10.1038/srep36162.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomed: Nanotechnol Biol Med. 2016;12:655–64. https://doi.org/10.1016/j.nano.2015.10.012.

    Article 
    CAS 

    Google Scholar
     

  • Huang L, Rong Y, Tang X, Yi K, Qi P, Hou J, et al. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Mol Cancer. 2022;21:45. https://doi.org/10.1186/s12943-022-01515-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong QH, Zhao L, Wan GQ, Hu YG, Li XL. Engineered BMSCs-derived exosomal miR-542-3p promotes cutaneous wound healing. Endocr Metab Immune Disord Drug Targets. 2023;23:336–46. https://doi.org/10.2174/1871530322666220523151713.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li W, Xu Y, Chen W. Bone mesenchymal stem cells deliver exogenous lncRNA CAHM via exosomes to regulate macrophage polarization and ameliorate intervertebral disc degeneration. Exp Cell Res. 2022;421:113408. https://doi.org/10.1016/j.yexcr.2022.113408.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pang L, Jin H, Lu Z, Xie F, Shen H, Li X, et al. Treatment with mesenchymal stem cell-derived nanovesicle-containing gelatin methacryloyl hydrogels alleviates osteoarthritis by modulating chondrogenesis and macrophage polarization. Adv Healthc Mater. 2023;12:e2300315. https://doi.org/10.1002/adhm.202300315.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia P, Wang Q, Song J, Wang X, Wang X, Lin Q, et al. Low-intensity pulsed ultrasound enhances the efficacy of bone marrow-derived mscs in osteoarthritis cartilage repair by regulating autophagy-mediated exosome release. Cartilage. 2022;13:19476035221093060. https://doi.org/10.1177/19476035221093060.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salunkhe S, Basak DM, Chitkara D, Mittal A. Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: strategies and significance. J Controlled Release: Off J Controlled Release Soc. 2020;326:599–614. https://doi.org/10.1016/j.jconrel.2020.07.042.

    Article 
    CAS 

    Google Scholar
     

  • Rana S, Zöller M. Exosome target cell selection and the importance of exosomal tetraspanins: a hypothesis. Biochem Soc Trans. 2011;39:559–62. https://doi.org/10.1042/bst0390559.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuzaka Y, Tanihata J, Komaki H, Ishiyama A, Oya Y, Rüegg U, et al. Characterization and functional analysis of extracellular vesicles and muscle-abundant mirnas (mir-1, mir-133a, and mir-206) in c2c12 myocytes and mdx mice. PloS One. 2016;11:e0167811. https://doi.org/10.1371/journal.pone.0167811.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei H, Chen F, Chen J, Lin H, Wang S, Wang Y, et al. Mesenchymal stem cell derived exosomes as nanodrug carrier of doxorubicin for targeted osteosarcoma therapy via SDF1-CXCR4 axis. Int J Nanomed. 2022;17:3483–95. https://doi.org/10.2147/ijn.S372851.

    Article 

    Google Scholar
     

  • Shefler I, Salamon P, Y. Hershko A, A. Mekori Y. Mast cells as sources and targets of membrane vesicles. Curr Pharm Des. 2011;17:3797–804. https://doi.org/10.2174/138161211798357836.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Wang J, Ren T, Huang Y, Liang X, Yu Y, et al. Bone marrow mesenchymal stem cell-derived exosomal miR-206 inhibits osteosarcoma progression by targeting TRA2B. Cancer Lett. 2020;490:54–65. https://doi.org/10.1016/j.canlet.2020.07.008.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Q, Zhou L, Lv D, Zhu X, Tang H. Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression. J Hematol Oncol. 2019;12:53. https://doi.org/10.1186/s13045-019-0739-0.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ailuno G, Baldassari S, Lai F, Florio T, Caviglioli G. Exosomes and extracellular vesicles as emerging theranostic platforms in cancer research. Cells. 2020; 9. https://doi.org/10.3390/cells9122569.

  • Wang Y, Yao J, Cai L, Liu T, Wang X, Zhang Y, et al. Bone-targeted extracellular vesicles from mesenchymal stem cells for osteoporosis therapy. Int J Nanomed. 2020;15:7967–77. https://doi.org/10.2147/ijn.S263756.

    Article 
    CAS 

    Google Scholar
     

  • Smyth T, Petrova K, Payton NM, Persaud I, Redzic JS, Graner MW, et al. Surface functionalization of exosomes using click chemistry. Bioconjugate Chem. 2014;25:1777–84. https://doi.org/10.1021/bc500291r.

    Article 
    CAS 

    Google Scholar
     

  • Jiang L, Luirink J, Kooijmans SAA, van Kessel KPM, Jong W, van Essen M, et al. A post-insertion strategy for surface functionalization of bacterial and mammalian cell-derived extracellular vesicles. Biochimica et. Biophysica acta Gen Subj. 2021;1865:129763. https://doi.org/10.1016/j.bbagen.2020.129763.

    Article 
    CAS 

    Google Scholar
     

  • Yan F, Zhong Z, Wang Y, Feng Y, Mei Z, Li H, et al. Exosome-based biomimetic nanoparticles targeted to inflamed joints for enhanced treatment of rheumatoid arthritis. J Nanobiotechnol. 2020;18:115. https://doi.org/10.1186/s12951-020-00675-6.

    Article 
    CAS 

    Google Scholar
     

  • Paulos CM, Turk MJ, Breur GJ, Low PS. Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis. Adv Drug Deliv Rev. 2004;56:1205–17. https://doi.org/10.1016/j.addr.2004.01.012.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang N, Xu C, Li N, Zhang S, Fu L, Chu X, et al. Folate receptor-targeted mixed polysialic acid micelles for combating rheumatoid arthritis: in vitro and in vivo evaluation. Drug Deliv. 2018;25:1182–91. https://doi.org/10.1080/10717544.2018.1472677.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kooijmans SAA, Fliervoet LAL, van der Meel R, Fens M, Heijnen HFG, van Bergen En Henegouwen PMP, et al. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J. Controlled Release : Off. J. Controlled Release Soc. 2016;224:77–85. https://doi.org/10.1016/j.jconrel.2016.01.009.

    Article 
    CAS 

    Google Scholar
     

  • Cui Y, Guo Y, Kong L, Shi J, Liu P, Li R, et al. A bone-targeted engineered exosome platform delivering siRNA to treat osteoporosis. Bioact Mater. 2022;10:207–21. https://doi.org/10.1016/j.bioactmat.2021.09.015.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yallowitz AR, Shim JH, Xu R, Greenblatt MB. An angiogenic approach to osteoanabolic therapy targeting the SHN3-SLIT3 pathway. Bone. 2023;172:116761. https://doi.org/10.1016/j.bone.2023.116761.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henning RJ. Cardiovascular exosomes and MicroRNAs in cardiovascular physiology and pathophysiology. J Cardiovasc Transl Res. 2021;14:195–212. https://doi.org/10.1007/s12265-020-10040-5.

    Article 
    PubMed 

    Google Scholar
     

  • Luo ZW, Li FX, Liu YW, Rao SS, Yin H, Huang J, et al. Aptamer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration. Nanoscale. 2019;11:20884–92. https://doi.org/10.1039/c9nr02791b.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vidal M. Exosomes and GPI-anchored proteins: judicious pairs for investigating biomarkers from body fluids. Adv Drug Deliv Rev. 2020;161-162:110–23. https://doi.org/10.1016/j.addr.2020.08.006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun S, Liu H, Hu Y, Wang Y, Zhao M, Yuan Y, et al. Selection and identification of a novel ssDNA aptamer targeting human skeletal muscle. Bioact Mater. 2023;20:166–78. https://doi.org/10.1016/j.bioactmat.2022.05.016.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi H, Choi Y, Yim HY, Mirzaaghasi A, Yoo JK, Choi C. Biodistribution of exosomes and engineering strategies for targeted delivery of therapeutic exosomes. Tissue Eng Regen Med. 2021;18:499–511. https://doi.org/10.1007/s13770-021-00361-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang Y, Xu X, Li X, Xiong J, Li B, Duan L, et al. Chondrocyte-targeted MicroRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy. ACS Appl Mater Interfaces. 2020;12:36938–47. https://doi.org/10.1021/acsami.0c10458.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang Y, Xu X, Xu L, Iqbal Z, Ouyang K, Zhang H, et al. Chondrocyte-specific genomic editing enabled by hybrid exosomes for osteoarthritis treatment. Theranostics. 2022;12:4866–78. https://doi.org/10.7150/thno.69368.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song S, Shim MK, Lim S, Moon Y, Yang S, Kim J, et al. In Situ One-Step fluorescence labeling strategy of exosomes via bioorthogonal click chemistry for real-time exosome tracking in vitro and in vivo. Bioconjugate Chem. 2020;31:1562–74. https://doi.org/10.1021/acs.bioconjchem.0c00216.

    Article 
    CAS 

    Google Scholar
     

  • You DG, Lim GT, Kwon S, Um W, Oh BH, Song SH, et al., Metabolically engineered stem cell-derived exosomes to regulate macrophage heterogeneity in rheumatoid arthritis. Sci Adv. 2021; 7. https://doi.org/10.1126/sciadv.abe0083.

  • Xue Y, Riva N, Zhao L, Shieh JS, Chin YT, Gatt A, et al. Recent advances of exosomes in soft tissue injuries in sports medicine: A critical review on biological and biomaterial applications. J Controlled Release: Off J Controlled Release Soc. 2023;364:90–108. https://doi.org/10.1016/j.jconrel.2023.10.031.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Xie Y, Hao Z, Zhou P, Wang P, Fang S, et al. Umbilical mesenchymal stem cell-derived exosome-encapsulated hydrogels accelerate bone repair by enhancing angiogenesis. ACS Appl Mater Interfaces. 2021;13:18472–87. https://doi.org/10.1021/acsami.0c22671.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han C, Zhou J, Liang C, Liu B, Pan X, Zhang Y, et al. Human umbilical cord mesenchymal stem cell derived exosomes encapsulated in functional peptide hydrogels promote cardiac repair. Biomater Sci. 2019;7:2920–33. https://doi.org/10.1039/c9bm00101h.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khayambashi P, Iyer J, Pillai S, Upadhyay A, Zhang Y, Tran SD. Hydrogel encapsulation of mesenchymal stem cells and their derived exosomes for tissue engineering. Int J Mol Sci. 2021; 22. https://doi.org/10.3390/ijms22020684.

  • Zhang H, Huang J, Alahdal M. Exosomes loaded with chondrogenic stimuli agents combined with 3D bioprinting hydrogel in the treatment of osteoarthritis and cartilage degeneration. Biomed Pharmacother = Biomedecine Pharmacotherapie. 2023;168:115715. https://doi.org/10.1016/j.biopha.2023.115715.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pishavar E, Luo H, Naserifar M, Hashemi M, Toosi S, Atala A, et al. Advanced hydrogels as exosome delivery systems for osteogenic differentiation of MSCs: application in bone regeneration. Int J Mol Sci. 2021; 22. https://doi.org/10.3390/ijms22126203.

  • Xu T, Hua Y, Mei P, Zeng D, Jiang S, Liao C. Black phosphorus thermosensitive hydrogels loaded with bone marrow mesenchymal stem cell-derived exosomes synergistically promote bone tissue defect repair. J. Mater. Chem. B. 2023;11:4396–407. https://doi.org/10.1039/d3tb00341h.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guan M, Liu C, Zheng Q, Chu G, Wang H, Jin J, et al. Exosome-laden injectable self-healing hydrogel based on quaternized chitosan and oxidized starch attenuates disc degeneration by suppressing nucleus pulposus senescence. Int J Biol Macromol. 2023;232:123479. https://doi.org/10.1016/j.ijbiomac.2023.123479.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu H, Zhang H, Bu Z, Liu Z, Lv F, Pan M, et al. Small extracellular vesicles released from bioglass/hydrogel scaffold promote vascularized bone regeneration by transferring miR-23a-3p. Int J Nanomed. 2022;17:6201–20. https://doi.org/10.2147/ijn.S389471.

    Article 

    Google Scholar
     

  • Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, et al. Osteoarthritis. Lancet (Lond, Engl). 2015;386:376–87. https://doi.org/10.1016/s0140-6736(14)60802-3.

    Article 
    CAS 

    Google Scholar
     

  • Xu H, Xu B. BMSC-derived exosomes ameliorate osteoarthritis by inhibiting pyroptosis of cartilage via delivering miR-326 targeting HDAC3 and STAT1//NF-κB p65 to chondrocytes. Mediators Inflamm. 2021;2021:9972805. https://doi.org/10.1155/2021/9972805.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song J, Zhao J, Liu T, Li Y, Dang X, Wang W. Prevalence and risk factors of osteoporosis in a chinese population: a cross-sectional study in Xi’an, Shaanxi Province, China. Med Sci Monit: Int Med J Exp Clin Res. 2023;29:e942346. https://doi.org/10.12659/msm.942346.

    Article 

    Google Scholar
     

  • Khosla S, Hofbauer LC. Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endocrinol. 2017;5:898–907. https://doi.org/10.1016/s2213-8587(17)30188-2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roux C, Briot K. Osteoporosis in 2017: addressing the crisis in the treatment of osteoporosis. Nat Rev Rheumatol. 2018;14:67–68. https://doi.org/10.1038/nrrheum.2017.218.

    Article 
    PubMed 

    Google Scholar
     

  • Hu Y, Li X, Zhang Q, Gu Z, Luo Y, Guo J, et al. Exosome-guided bone targeted delivery of Antagomir-188 as an anabolic therapy for bone loss. Bioact Mater. 2021;6:2905–13. https://doi.org/10.1016/j.bioactmat.2021.02.014.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith MH, Berman JR. What is rheumatoid arthritis? JAMA. 2022;327:1194. https://doi.org/10.1001/jama.2022.0786.

    Article 
    PubMed 

    Google Scholar
     

  • George MD, Baker JF, Winthrop K, Alemao E, Chen L, Connolly S, et al. Risk of biologics and glucocorticoids in patients with rheumatoid arthritis undergoing arthroplasty: a Cohort study. Ann Intern Med. 2019;170:825–36. https://doi.org/10.7326/m18-2217.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burmester GR, Pope JE. Novel treatment strategies in rheumatoid arthritis. Lancet (Lond, Engl). 2017;389:2338–48. https://doi.org/10.1016/s0140-6736(17)31491-5.

    Article 

    Google Scholar
     

  • Chang TH, Wu CS, Chiou SH, Chang CH, Liao HJ. Adipose-derived stem cell exosomes as a novel anti-inflammatory agent and the current therapeutic targets for rheumatoid arthritis. Biomedicines. 2022; 10. https://doi.org/10.3390/biomedicines10071725.

  • Tsujimaru K, Takanashi M, Sudo K, Ishikawa A, Mineo S, Ueda S, et al. Extracellular microvesicles that originated adipose tissue derived mesenchymal stem cells have the potential ability to improve rheumatoid arthritis on mice. Regenerative Ther. 2020;15:305–11. https://doi.org/10.1016/j.reth.2020.08.004.

    Article 

    Google Scholar
     

  • Siouti E, Andreakos E. The many facets of macrophages in rheumatoid arthritis. Biochem Pharmacol. 2019;165:152–69. https://doi.org/10.1016/j.bcp.2019.03.029.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Feng Y, Zheng X, Jia M, Mei Z, Wang Y, et al. M2-type exosomes nanoparticles for rheumatoid arthritis therapy via macrophage re-polarization. J Controlled Release: Off J Controlled Release Soc. 2022;341:16–30. https://doi.org/10.1016/j.jconrel.2021.11.019.

    Article 
    CAS 

    Google Scholar
     

  • Fan L, Guan P, Xiao C, Wen H, Wang Q, Liu C, et al. Exosome-functionalized polyetheretherketone-based implant with immunomodulatory property for enhancing osseointegration. Bioact Mater. 2021;6:2754–66. https://doi.org/10.1016/j.bioactmat.2021.02.005.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Wang H, Xia Y, Yan F, Lu Y. Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF. J Immunol (Baltim, Md: 1950). 2018;201:2472–82. https://doi.org/10.4049/jimmunol.1800304.

    Article 
    CAS 

    Google Scholar
     

  • Xu Z, Zhou X, Wu J, Cui X, Wang M, Wang X, et al. Mesenchymal stem cell-derived exosomes carrying microRNA-150 suppresses the proliferation and migration of osteosarcoma cells via targeting IGF2BP1. Transl Cancer Res. 2020;9:5323–35. https://doi.org/10.21037/tcr-20-83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang X, Wu W, Jing D, Yang L, Guo H, Wang L, et al. Engineered exosome as targeted lncRNA MEG3 delivery vehicles for osteosarcoma therapy. J Controlled Release : Off J Controlled Release Soc. 2022;343:107–17. https://doi.org/10.1016/j.jconrel.2022.01.026.

    Article 
    CAS 

    Google Scholar
     

  • Khalifeh Soltani S, Forogh B, Ahmadbeigi N, Hadizadeh Kharazi H, Fallahzadeh K, Kashani L, et al. Safety and efficacy of allogenic placental mesenchymal stem cells for treating knee osteoarthritis: a pilot study. Cytotherapy. 2019;21:54–63. https://doi.org/10.1016/j.jcyt.2018.11.003.

    Article 
    PubMed 

    Google Scholar
     

  • Lamo-Espinosa JM, Blanco JF, Sánchez M, Moreno V, Granero-Moltó F, Sánchez-Guijo F, et al. Phase II multicenter randomized controlled clinical trial on the efficacy of intra-articular injection of autologous bone marrow mesenchymal stem cells with platelet rich plasma for the treatment of knee osteoarthritis. J Transl Med. 2020;18:356. https://doi.org/10.1186/s12967-020-02530-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torrecillas-Baena B, Pulido-Escribano V, Dorado G, Gálvez-Moreno M, Camacho-Cardenosa M, Casado-Díaz A. Clinical potential of mesenchymal stem cell-derived exosomes in bone regeneration. J Clin Med. 2023; 12. https://doi.org/10.3390/jcm12134385.

  • Lu CH, Chen YA, Ke CC, Liu RS. Mesenchymal stem cell-derived extracellular vesicle: a promising alternative therapy for osteoporosis. Int J Mol Sci. 2021; 22. https://doi.org/10.3390/ijms222312750.

  • Zeng ZL, Xie H. Mesenchymal stem cell-derived extracellular vesicles: a possible therapeutic strategy for orthopaedic diseases: a narrative review. Biomater. Transl. 2022;3:175–87. https://doi.org/10.12336/biomatertransl.2022.03.002.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang CC, Kang M, Lu Y, Shirazi S, Diaz JI, Cooper LF, et al. Functionally engineered extracellular vesicles improve bone regeneration. Acta Biomaterialia. 2020;109:182–94. https://doi.org/10.1016/j.actbio.2020.04.017.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu XD, Kang L, Tian J, Wu Y, Huang Y, Liu J, et al. Exosomes derived from magnetically actuated bone mesenchymal stem cells promote tendon-bone healing through the miR-21-5p/SMAD7 pathway. Mater Today Bio. 2022;15:100319. https://doi.org/10.1016/j.mtbio.2022.100319.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang J, Zhang J, Zhang Y, Liu W, Ni W, Huang X, et al. Mesenchymal stem cells-derived exosomes ameliorate intervertebral disc degeneration through inhibiting pyroptosis. J Cell Mol Med. 2020;24:11742–54. https://doi.org/10.1111/jcmm.15784.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan Q, Wang X, Liu L, Cai Y, Zhao X, Ma H, et al. Exosomes derived from human placental mesenchymal stromal cells carrying AntagomiR-4450 alleviate intervertebral disc degeneration through upregulation of ZNF121. Stem Cells Dev. 2020;29:1038–58. https://doi.org/10.1089/scd.2020.0083.

    Article 
    PubMed 

    Google Scholar
     

  • Chen C, Fu L, Luo Y, Zeng W, Qi X, Wei Y, et al. Engineered exosome-functionalized extracellular matrix-mimicking hydrogel for promoting bone repair in glucocorticoid-induced osteonecrosis of the femoral head. ACS Appl Mater Interfaces. 2023;15:28891–906. https://doi.org/10.1021/acsami.3c01539.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li F, Wu J, Li D, Hao L, Li Y, Yi D, et al. Engineering stem cells to produce exosomes with enhanced bone regeneration effects: an alternative strategy for gene therapy. J Nanobiotechnol. 2022;20:135. https://doi.org/10.1186/s12951-022-01347-3.

    Article 
    CAS 

    Google Scholar
     

  • Lu X, Xu G, Lin Z, Zou F, Liu S, Zhang Y, et al. Engineered exosomes enriched in netrin-1 modRNA promote axonal growth in spinal cord injury by attenuating inflammation and pyroptosis. Biomater Res. 2023;27:3. https://doi.org/10.1186/s40824-023-00339-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Li M, Jin L, Guo P, Zhang Z, Zhanghuang C, et al. Exosome mimetics derived from bone marrow mesenchymal stem cells deliver doxorubicin to osteosarcoma in vitro and in vivo. Drug Deliv. 2022;29:3291–303. https://doi.org/10.1080/10717544.2022.2141921.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng J, Chen Z, Liu C, Zhong M, Wang S, Sun Y, et al. Bone mesenchymal stem cell-derived exosome-loaded injectable hydrogel for minimally invasive treatment of spinal cord injury. Nanomed (Lond, Engl). 2021;16:1567–79. https://doi.org/10.2217/nnm-2021-0025.

    Article 
    CAS 

    Google Scholar
     

  • Qiu M, Liu D, Fu Q. MiR-129-5p shuttled by human synovial mesenchymal stem cell-derived exosomes relieves IL-1β induced osteoarthritis via targeting HMGB1. Life Sci. 2021;269:118987. https://doi.org/10.1016/j.lfs.2020.118987.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Latest Intelligence