Search
Close this search box.

Mesenchymal stem cell-derived apoptotic bodies alleviate alveolar bone destruction by regulating osteoclast differentiation and function – International Journal of Oral Science

  • Trindade, F. et al. Uncovering the molecular networks in periodontitis. Proteomics Clin. Appl. 8, 748–761 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinane, D. Causation and pathogenesis of periodontal disease. Periodontol. 2000 25, 8–20 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Lourenço, T. et al. Microbial signature profiles of periodontally healthy and diseased patients. J. Clin. Periodontol. 41, 1027–1036 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tobeiha, M., Moghadasian, M., Amin, N. & Jafarnejad, S. RANKL/RANK/OPG pathway: a mechanism involved in exercise-induced bone remodeling. BioMed Res. Int. 2020, 6910312 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Dougall, W. et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 13, 2412–2424 (1999).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prockop, D. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • Shi, S. & Gronthos, S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J. Bone Miner. Res. 18, 696–704 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Shi, S. et al. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat. Biotechnol. 20, 587–591 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Antebi, B., Pelled, G. & Gazit, D. Stem cell therapy for osteoporosis. Curr. Osteoporos. Rep. 12, 41–47 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Yao, W. et al. Reversing bone loss by directing mesenchymal stem cells to bone. Stem Cells 31, 2003–2014 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Mettraux, G., Gusberti, F. & Graf, H. Oxygen tension (pO2) in untreated human periodontal pockets. J. Periodontol. 55, 516–521 (1984).

    Article 
    PubMed 

    Google Scholar
     

  • Koch, C., Kruuv, J., Frey, H. & Snyder, R. Plateau phase in growth induced by hypoxia. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 23, 67–74 (1973).

    Article 
    PubMed 

    Google Scholar
     

  • Ho, F., Tsang, W., Kong, S. & Kwok, T. The critical role of caspases activation in hypoxia/reoxygenation induced apoptosis. Biochem. Biophys. Res. Commun. 345, 1131–1137 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Cao, L., Li, Y., Cheng, F., Li, S. & Long, D. Hypoxia/reoxygenation up-regulated the expression of death receptor 5 and enhanced apoptosis in human hepatocyte line. Transplant. Proc. 38, 2207–2209 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Juncadella, I. et al. Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature 493, 547–551 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Hochreiter-Hufford, A. & Ravichandran, K. Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb. Perspect. Biol. 5, a008748 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinchen, J. et al. A pathway for phagosome maturation during engulfment of apoptotic cells. Nat. Cell Biol. 10, 556–566 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elliott, M. et al. Unexpected requirement for ELMO1 in clearance of apoptotic germ cells in vivo. Nature 467, 333–337 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elliott, M. & Ravichandran, K. The dynamics of apoptotic cell clearance. Dev. Cell 38, 147–160 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, Y. et al. Cell reprogramming using extracellular vesicles from differentiating stem cells into white/beige adipocytes. Sci. Adv. 6, eaay6721 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi, X. et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats. Int. J. Biolog. Sci. 12, 836–849 (2016).

    Article 

    Google Scholar
     

  • Vlassov, A., Magdaleno, S., Setterquist, R. & Conrad, R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta. 1820, 940–948 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Holmgren, L., Bergsmedh, A. & Spetz, A. Horizontal transfer of DNA by the uptake of apoptotic bodies. Vox Sang. 83, 305–306 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Apoptosis-induced translocation of centromere protein F in its corresponding autoantibody production in hepatocellular carcinoma. Oncoimmunology 10, 1992104 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bose, R. et al. Reconstructed apoptotic bodies as targeted “nano decoys” to treat intracellular bacterial infections within macrophages and cancer cells. ACS Nano 14, 5818–5835 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zernecke, A. et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci. Signal. 2, ra81 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Hristov, M., Erl, W., Linder, S. & Weber, P. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 104, 2761–2766 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Ma, Q. et al. Mature osteoclast-derived apoptotic bodies promote osteogenic differentiation via RANKL-mediated reverse signaling. J. Biol. Chem. 294, 11240–11247 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, J., Mikami, K., Venugopal, S., Li, Y. & Török, N. Apoptotic body engulfment by hepatic stellate cells promotes their survival by the JAK/STAT and Akt/NF-kappaB-dependent pathways. J. Hepatol. 51, 139–148 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marin-Gallen, S. et al. Dendritic cells pulsed with antigen-specific apoptotic bodies prevent experimental type 1 diabetes. Clin. Exp. Immunol. 160, 207–214 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Apoptotic bodies derived from mesenchymal stem cells promote cutaneous wound healing via regulating the functions of macrophages. Stem Cell Res. Therapy 11, 507 (2020).

    Article 

    Google Scholar
     

  • György, B. et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 68, 2667–2688 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, D. et al. Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors. Cell Res. 28, 918–933 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei, F. et al. Treatment of inflammatory bone loss in periodontitis by stem cell-derived exosomes. Acta Biomater. 141, 333–343 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Qiao, X. et al. Dental pulp stem cell-derived exosomes regulate anti-inflammatory and osteogenesis in periodontal ligament stem cells and promote the repair of experimental periodontitis in rats. Int. J. Nanomed. 18, 4683–4703 (2023).

    Article 

    Google Scholar
     

  • Li, Y. et al. Triamcinolone acetonide-loaded nanoparticles encapsulated by CD90 MCSs-derived microvesicles drive anti-inflammatory properties and promote cartilage regeneration after osteoarthritis. J. Nanobiotechnol. 20, 150 (2022).

    Article 

    Google Scholar
     

  • Nawaz, M. et al. Extracellular vesicles: evolving factors in stem cell biology. Stem Cells Int. 2016, 1073140 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Weavers, H., Evans, I., Martin, P. & Wood, W. Corpse engulfment generates a molecular memory that primes the macrophage inflammatory response. Cell 165, 1658–1671 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, Q. et al. Apoptotic extracellular vesicles alleviate Pg-LPS induced inflammatory responses of macrophages via AMPK/SIRT1/NF-κB pathway and inhibit osteoclast formation. J. Periodontol. 93, 1738–1751 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Plotkin, L. Apoptotic osteocytes and the control of targeted bone resorption. Curr. Osteoporos. Rep. 12, 121–126 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kogianni, G., Mann, V. & Noble, B. Apoptotic bodies convey activity capable of initiating osteoclastogenesis and localized bone destruction. J. Bone Miner. Res. 23, 915–927 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, K. et al. Extracellular vesicles from adipose tissue-derived stem cells alleviate osteoporosis through osteoprotegerin and miR-21-5p. J. Extracell. Vesicles 10, e12152 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hrdlicka, H., Lee, S. & Delany, A. MicroRNAs are critical regulators of osteoclast differentiation. Curr. Mol. Biol. Rep. 5, 65–74 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franceschetti, T., Kessler, C., Lee, S. & Delany, A. miR-29 promotes murine osteoclastogenesis by regulating osteoclast commitment and migration. J. Biol. Chem. 288, 33347–33360 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haneklaus, M., Gerlic, M., O’Neill, L. & Masters, S. miR-223: infection, inflammation and cancer. J. Intern. Med. 274, 215–226 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, T. et al. MicroRNAs modulate the noncanonical transcription factor NF-kappaB pathway by regulating expression of the kinase IKKalpha during macrophage differentiation. Nat. Immunol. 11, 799–805 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fazi, F. et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123, 819–831 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Coxon, F. & Taylor, A. Vesicular trafficking in osteoclasts. Semin. Cell Dev. Biol. 19, 424–433 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Mulari, M., Vääräniemi, J. & Väänänen, H. Intracellular membrane trafficking in bone resorbing osteoclasts. Microsc. Res. Tech. 61, 496–503 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Abu-Amer, Y., Ross, F., Schlesinger, P., Tondravi, M. & Teitelbaum, S. Substrate recognition by osteoclast precursors induces C-src/microtubule association. J. Cell Biol. 137, 247–258 (1997).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulari, M., Zhao, H., Lakkakorpi, P. & Väänänen, H. Osteoclast ruffled border has distinct subdomains for secretion and degraded matrix uptake. Traffic 4, 113–125 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Gluckman, E. et al. Pediatric bone marrow transplantation for leukemia and aplastic anemia. Report of 222 cases transplanted in a single center. Nouv. Rev. Fr. Hematol. 31, 111–114 (1989).

    PubMed 

    Google Scholar
     

  • Hodivala-Dilke, K. et al. Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J. Clin. Investig. 103, 229–238 (1999).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McHugh, K. et al. Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J. Clin. Investig. 105, 433–440 (2000).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, S. et al. Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption. J. Cell Biol. 192, 883–897 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Destaing, O. et al. β1A integrin is a master regulator of invadosome organization and function. Mol. Biol. Cell 21, 4108–4119 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakashima, T. & Takayanagi, H. The dynamic interplay between osteoclasts and the immune system. Arch. Biochem. Biophys. 473, 166–171 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Yagi, M. et al. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J. Exp. Med. 202, 345–351 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rho, J. et al. Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis. DNA Cell Biol. 21, 541–549 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, K., Lee, S., Ha Kim, J., Choi, Y. & Kim, N. NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol. Endocrinol. 22, 176–185 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Kukita, T. et al. RANKL-induced DC-STAMP is essential for osteoclastogenesis. J. Exp. Med. 200, 941–946 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiu, Y. et al. Regulation of human osteoclast development by dendritic cell-specific transmembrane protein (DC-STAMP). J. Bone Miner. Res. 27, 79–92 (2012).

    Article 
    PubMed 

    Google Scholar